K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

\(a^2+a+1=0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\Rightarrow a\in C\)

Vì vậy P không tồn tại

Lớp 8 nên làm như này nhé :))

22 tháng 7 2020

Giá 10 quả trứng là: \(3000.10=30000\)

Giá 4 cân thịt là: \(50000.4=200000\)

Giá 5 gói bột canh là: \(5000.5=25000\)

Lan mua hết: \(30000+200000+25000=255000\)

Còn thừa: \(300000-255000=45000\)

22 tháng 7 2020

                              Bài làm :

10 quả trứng có giá là :

3 000 x 10 = 30 000

Thịt 4 cân có giá là :

50 000 x 4 = 200 000

Bột canh 5 gói có giá :

5 000 x 5 = 25 000

Vậy Lan mua hết số tiền là :

30 000 + 200 000 + 25 000 = 255 000

Và còn thừa số tiền là :

300 000  - 255 000 = 45 000

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

22 tháng 7 2020

Bài làm:

Ta có: \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)(hằng đẳng thức đầu)

\(=\left(x-y+z+y-z\right)^2=x^2\)

22 tháng 7 2020

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

22 tháng 7 2020

Ta có: \(\hept{\begin{cases}a>c+d\\b>c+d\end{cases}\Leftrightarrow\hept{\begin{cases}a-c>d\\b-d>c\end{cases}\Rightarrow}\left(a-c\right)\left(b-d\right)>cd\Leftrightarrow ab-bc-ad+cd>cd}\Leftrightarrow ab>ad+bc\)

21 tháng 7 2020

\(7\left(2x-5\right)-5\left(7x-2\right)+2\left(5x-7\right)=-6\)

<=> \(14x-35-35x+10+10x-14=-6\)

<=> \(-11x-39=-6\)

<=> \(-11x-33=0\)

<=> \(x=-3\)

21 tháng 7 2020

\(7\left(2x-5\right)-5\left(7x-2\right)+2\left(5x-7\right)=-6\)

\(\Leftrightarrow14x-35-35x+10+10x-14=-6\)

\(\Leftrightarrow-11x-39=-6\)

\(\Leftrightarrow-11x=33\)

\(\Leftrightarrow x=-3\)

21 tháng 7 2020

\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)

<=> \(4x^2-4x-3x^2+15-x^2=x-3-x-4\)

<=> \(-4x+15=-7\)

<=> \(-4x=-22\)

<=> \(x=\frac{11}{2}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

22 tháng 7 2020

Bài làm:

Ta có: \(A=x^3+y^3+xy+1=\left(x+y\right)\left(x^2-xy+y^2\right)+xy+1\)

\(=x^2-xy+y^2+xy+1=x^2+y^2+1\)

\(\ge\frac{\left(x+y\right)^2}{2}+1=\frac{1^2}{2}+1=\frac{3}{2}\)(BĐT Cauchy)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

21 tháng 7 2020

Bạn xem lại đề bài, theo mình đề là: Tìm GTNN của A=x3+y3+xy