Tìm tất cả các giá trị của x để biểu thức B = \(\dfrac{2\sqrt{x}}{x+\sqrt{x}+1}\)\(\left(x\ge0\right)\) đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
Lời giải:
ĐK: $3m+1\neq 0$
Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$
Vì $A\in Ox$ nên $y_A=0$
$y_A=(3m+1)x_A-6m-1=0$
$\Rightarrow x_A=\frac{6m+1}{3m+1}$
Vậy $A(\frac{6m+1}{3m+1},0)$
Tương tự: $B(0, -6m-1)$
Gọi $h$ là khoảng cách từ $O$ đến $(d)$
Khi đó, theo hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$
Để $h$ max thì $\frac{1}{h^2}$ min
Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min
Áp dụng BĐT Bunhiacopxky:
$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$
$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$
Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$
$\Leftrightarrow m=-1$
a/
Xét tg vuông ABH
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+3^2}=3\sqrt{5}cm\)
\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{6^2}{3}=12cm\)
Xét tg vuông ACH
\(AC=\sqrt{AH^2+CH^2}=\sqrt{6^2+12^2}=6\sqrt{5}cm\)
b/
\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}\)
CH=BC-BH
\(AH^2=BH.CH\)
Xét tg vuông ACH
\(AC=\sqrt{AH^2+CH^2}\)
Bạn tự thay số và tính toán nhé
Cách 1: Ta nhận thấy với mọi \(x>0\) thì \(3\sqrt{x}+2>2\sqrt{x}+2\), do đó \(B>1\). Với \(x=0\) thì \(B=1\). Do đó \(min_B=1\Leftrightarrow x=0\)
Cách 1 tuy nhanh gọn nhưng nó chỉ có tác dụng trong một số ít các trường hợp. Trường hợp này may mắn cho ta ở chỗ ta có thể đánh giá tử lớn hơn hoặc bằng mẫu với mọi \(x\ge0\) (dấu "=" chỉ xảy ra khi \(x=0\))
Cách 2: \(B=\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\)
\(\Leftrightarrow2B\sqrt{x}+2B=3\sqrt{x}+2\)
\(\Leftrightarrow\left(2B-3\right)\sqrt{x}=2-2B\)
\(\Leftrightarrow\sqrt{x}=\dfrac{2-2B}{2B-3}\)
Vì \(\sqrt{x}\ge0\) nên \(\dfrac{2-2B}{2B-3}\ge0\)
\(\Leftrightarrow1\le B< \dfrac{3}{2}\). Như vậy \(min_B=1\Leftrightarrow x=0\)
Rõ ràng cách 2 dài hơn cách 1 nhưng nó có thể áp dụng trong nhiều dạng bài tìm GTNN hay GTLN khác nhau. Bạn xem xét bài toán rồi chọn cách làm cho phù hợp là được.
B = \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\) = \(\dfrac{3\sqrt{x}+3-1}{2\sqrt{x}+2}\) = \(\dfrac{3\left(\sqrt{x}+1\right)-1}{2\left(\sqrt{x}+1\right)}\) = \(\dfrac{3}{2}\) - \(\dfrac{1}{2\left(\sqrt{x}+1\right)}\)
Vì \(\dfrac{1}{2\sqrt{x}+2}\) > 0 ∀ \(x\) ≥ 0 ⇒ B min ⇔A = \(\dfrac{1}{2\sqrt{x}+2}\) max
2\(\sqrt{x}\) ≥ 0 ⇒ 2\(\sqrt{x}\) + 2 ≥ 2 ⇒ Max A = \(\dfrac{1}{2}\) ⇔ \(x\) = 0
Vậy Min B = \(\dfrac{3}{2}\) - \(\dfrac{1}{2}\) = 1 ⇔ \(x\) = 0
\(2\left(x+1\right)-1=3\)
\(\Leftrightarrow2\left(x+1\right)=3+1\)
\(\Leftrightarrow2\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4:2\)
\(\Leftrightarrow x+1=2\)
\(\Leftrightarrow x=2-1\)
\(\Leftrightarrow x=1\)
\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\sqrt{3^2}+2\sqrt{3}.\sqrt{2}+\sqrt{2^2}}-\sqrt{\sqrt{3^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{2^2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
Lời giải:
$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{3}{2}B\leq 1$
$\Rightarrow B\leq \frac{2}{3}$
Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$