K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :

\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)

Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

Vì n nguyên 

\(\Rightarrow2n\in\left\{0;2\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

5 tháng 8 2020

Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)   

=> \(2n^2+3n+3⋮2n-1\)

=> \(4n^2+6n+6⋮\left(2n-1\right)\)

=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)

Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)

=> \(10⋮\left(2n-1\right)\)

=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)

=> n = ...... 

5 tháng 8 2020

Với a; b ; c  khác 0

Ta có: 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}\)(1)

Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)(2)

\(\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}=\frac{ax+by+cz}{a^2+b^2+c^2}\)(3)

Từ (1) ; (2) ; (3) 

=> \(\frac{ax+by+cz}{a^2+b^2+c^2}\)\(=\frac{x^2+y^2+z^2}{ax+by+cz}\)

=> \(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

5 tháng 8 2020

Do: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) => \(\frac{x}{a}=\frac{y}{b};\frac{y}{b}=\frac{z}{c};\frac{z}{c}=\frac{x}{a}\)

<=> \(ay=bx;bz=cy;az=cx\)

<=> \(\left(ay-bx\right)=0;bz-cy=0;az-cx=0\)

<=> \(\left(ay-bx\right)^2+\left(yc-bz\right)^2+\left(az-cx\right)^2=0\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2=2abxy+2bcyz+2cazx\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2+a^2x^2+b^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2cazx\)<=> \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

=> Ta có ĐPCM

5 tháng 8 2020

Bg

Bg

Ta có: x chia 7 dư 2, y chia 7 dư 5. (x, y thuộc Z)

=> x = 7a + 2 và y = 7b + 5   (a, b thuộc Z)

=> xy = (7a + 2)(7b - 5)

=> xy = 7b(7a + 2) - 5(7a + 2)

Vì 7b(7a + 2) \(⋮\)7

Nên ta xét 5(7a + 2):

5(7a + 2) = 5.7a + 5.2

= 35a + 10

Mà 35a \(⋮\)7

=> 35a + 10 chia 7 dư 10

=> xy chia 7 dư 10

5 tháng 8 2020

x chia 7 dư 2 => x có dạng 7k + 2 ( k thuộc Z )

y chia 7 dư 5 => y có dạng 7k + 5 ( k thuộc Z )

xy = ( 7k + 2 )( 7k + 5 ) = 49k2 + 49k + 10 = 49k2 + 49k + 7 + 3 

=> xy chia 7 dư 3 

Không chắc nhớ 

5 tháng 8 2020

Đề như này thì bạn phải thêm y^3 vào mới tính được giá trị biểu thức.

Mình thêm y^3 theo ý mình. Bạn xem thử nhé!

\(R=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y+y\right)^3=8\left(x+y\right)^3=8.50^3=...\)

5 tháng 8 2020

a,\(LHS=a^3+3a^2b+3ba^2+b^3=\left(a+b\right)^3\) (đpcm)

b,\(LHS=a^3-3a^2b+3ab^2-3b^3=\left(a-b\right)^3\) (đpcm)

5 tháng 8 2020

a) (a + b)3 = a3 + b3 + 3a2b + 3ab2 = a3 + b3 + 3ab(a + b) (đpcm)

b) (a - b)3 = a3 - b3 -- 3a2b + 3ab2 = a3 - b3 - 3ab(a - b) (đpcm)

5 tháng 8 2020

Đặt \(x^2-3=A\)

Vì \(x^2\ge0\forall x\Rightarrow x^2-3\ge-3\) 

\(\Rightarrow GTNN\left(A\right)=-3\Leftrightarrow x^2=0\Rightarrow x=0\)

Vậy \(GTNN\left(A\right)=0\) khi x=0

còn lớn nhất không tìm dc nha

5 tháng 8 2020

\(x^2\ge0\forall x\Rightarrow x^2-3\ge-3\forall x\)

Dấu " = " xảy ra <=> x = 0

Vậy GTNN của biểu thức = -3 , đạt được khi x = 0

Còn cái này không có GTLN nhá 

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

5 tháng 8 2020

\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\left(ĐK:a\ne\pm1\right)\)

\(=\frac{a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2}{a^2-1}\)

\(=\frac{a^2+a-a^2+a+2}{a^2-1}=\frac{2}{a-1}\left(Q.E.D\right)\)

Để A nguyên suy ra 2/a-1 nguyên

\(< =>2⋮a-1< =>a\in\left\{2;3;-1;0\right\}\)

Để \(A\ge1< =>\frac{2}{a-1}\ge1< =>2\ge a-1< =>a\le3\)

mấy bài khác để từ từ mình làm dần hoặc bạn khác làm