K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ Tính cạnh huyền của đáy :5^2 + 12^2  = 13 (cm)

+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)

+ Diện tích một đáy : (5.12):2 = 30(cm2)

+ Thể tích lăng trụ : 30.8 = 240(cm3)

Hok tốt

Vì đáy là tam giác vuông nên độ dài cạnh huyền của đáy là: \(\sqrt{5^2+12^2}=\sqrt{169}=13\)

Diện tích xung quanh của hình lăng trụ đứng đấy là: (5+12+13) .8 = 240 (cm2 )

Thể tích của hình lăng trụ đứng đấy là: \(\frac{1}{2}.5+12.10=122,5\)

Gọi khoảng cách từ nhà Bình đến trường là x (km) , ( x > 0)

Thời gian Bình đi từ nhà đến trường là: x /15 (giờ) 

Thời gian Bình đi từ trường về nhà là: x /12(giờ) 

Vì thời gian về nhiều hơn thời gian đi là 6 phút = 1/10 (giờ)

Ta có PT: x /12 – x /15 = 1/10 

 <=> 5x – 4x = 6 

<=> x = 6 

Vậy nhà Bình cách trường 6km

hok tốt ^^

6 tháng 8 2020

Đổi 6 phút = 0,1 giờ

Gọi thời gian đi của Bình là a ; thời gian về của Bình là b

Ta có : b - a = 0,1 (1)

Lại có 15a = 12b (= AB)

=> 5a = 4b

Từ (1) => 4(b - a) = 0,1.4

=> 4b - 4a = 0,4

=> 5a - 4a = 0,4 (Vì 5a = 4b)

=> a = 0,4

=> S = 0,4.15 = 6

Vậy nhà Bình cách trường 6 km

Cách giải

a, 2x - x (3x + 1 ) < 15 - 3x(x + 2)

<=> 2x - 3x- x < 15 - 3x2 - 6x

<=> 7x < 15

<=> x < 15/7 Vậy Tập nghiệm của BPT là : { x / x < 15/7 }

b , BPT <=> 2(1 - 2x ) - 16 < 1 - 5x + 8x

    <=> -7x < 15

   <=> x > -15/7 Vậy tập nghiệm của BPT là : { x / x > -15/7 }

6 tháng 8 2020

a) 2x-x(3x+1) < 15-3x(x+2)

<=> 2x-3x2-x < 15-3x2-6x

<=> 2x-3x2-x+3x2+6x < 15

<=> 7x < 15

<=> x < 15/7

Vậy tập nghiệm của bất phương trình là x < 15/7

b) \(\frac{1-2x}{4}-2\le\frac{1-5x}{8}+x\)

Quy đồng mẫu ta được :

\(\frac{2-4x}{8}-\frac{16}{8}\le\frac{1-5x}{8}+\frac{8x}{8}\)

Khử mẫu

=> \(2-4x-16\le1-5x+8x\)

<=> \(-4x+5x-8x\le1-2+16\)

<=> \(-7x\le15\)

<=> \(x\ge-\frac{15}{7}\)

Vậy tập nghiệm của bất phương trình là \(x\ge-\frac{15}{7}\)

6 tháng 8 2020

5x(x-1)(2x+3) - 10x(x2-4x+5) - (x-1)(x-4)

= (5x2-5x)(2x+3)-10x3+10x2-50x -( x2-5x+4 )

= 10x3+5x2-15x-10x3+40x2-50x-x2+5x-4

= 44x2-60x-4

Thế x=3/2 ta được :

44.(3/2)2-60.3/2-4 = 99-90-4 = 5

Vậy giá trị của biểu thức = 5 khi x=3/2

5 tháng 8 2020

a) Áp dụng tính chất tia phân giác 

=> \(\frac{DB}{DC}=\frac{AB}{AC}=\frac{3}{4}\)

Áp dụng định lí Pytago => \(BC=10\)=> \(DB+DC=10\)

=> \(DB=\frac{30}{7};BC=10\)

b) Đây là 1 HTL (Đi thi ko cần phải chứng minh) (\(AH^2=HB.HC\))

c) Tam giác EBD đồng dạng tam giác ABC (gg) khi có chung góc B và BED=BAC=90 (gt)

=> \(\frac{EB}{BD}=\frac{AB}{BC}\)

=> \(EB.BC=BD.AB\)(ĐPCM)

d) Áp dụng HTL: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

Thay AB=6; AC=8 vào: 

=> \(\frac{1}{AH^2}=\frac{25}{576}\)

=> \(AH=\frac{24}{5}\)

Ta tiếp tục áp dụng HTL: \(BH.BC=AB^2\)

Thay AB=6; BC=10 (CMT) vào ta được:

=> \(BH=\frac{36}{10}\)

Có: \(BD=\frac{30}{7}\)(CMT) => \(HD=\frac{24}{35}\)

=> Diện tích tam giác AHD = \(\frac{AH.HD}{2}=\frac{24}{35}.\frac{5}{24}:2=\frac{1}{14}\)

Vậy diện tích tam giác AHD = \(\frac{1}{14}\)(cm^2)

5 tháng 8 2020

Up hình kiểu chi nhỉ mình vẽ hình trên sketpad nma ko bt up ảnh nnao

5 tháng 8 2020

Lần sau bạn ghi đúng lớp với ạ!

1/ Đặt: \(\sqrt[3]{x+1}=a;\sqrt[3]{x+3}=b\Rightarrow\sqrt[3]{x+2}=\sqrt[3]{\frac{a^3+b^3}{2}}\)

Thay vào ta có: \(a+b+\sqrt[3]{\frac{a^3+b^3}{2}}=0\)

<=> \(a+b=-\sqrt[3]{\frac{a^3+b^3}{2}}\)

<=> \(a^3+b^3+3a^2b+3ab^2=-\frac{a^3+b^3}{2}\)

<=> \(a^3+b^3+2a^2b+2ab^2=0\)

<=> \(\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)=0\)

<=> \(\orbr{\begin{cases}a+b=0\\a^2+ab+b^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\end{cases}}\)

Với a = -b ta có: \(\sqrt[3]{x+1}=-\sqrt[3]{x+3}\)

<=> x + 1 = - x - 3 <=> 2x = - 4 <=> x = - 2

Với \(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2=b^2=0\)

<=> a = b = 0 <=> \(\sqrt[3]{x+1}=\sqrt[3]{x+3}=0\) vô lí 

Vậy x = -2 là nghiệm 

5 tháng 8 2020

Lần sau ghi đúng lớp! 

Ta có: \(\left(ax+b\right)^3+\left(bx+a\right)^3=\left(ax+b+bx+a\right)^3-3\left(ax+b\right)\left(bx+a\right)\left(ax+b+bx+a\right)\)

\(=\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)\)

Phương trình ban đầu :

<=> \(\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=\left(a+b\right)^3\left(x+1\right)^3\)

<=> \(\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=0\)(1) 

TH1) Với a = 0; (1) <=> \(b\left(bx\right)b\left(x+1\right)=0\Leftrightarrow b^3x\left(x+1\right)=0\) (2) 

  • b= 0 ; (2) <=> 0 = 0 luôn đúng  => phương trình (2) có vô số nghiệm => phương trình ban đầu có vô số nghiệm 
  • b khác 0 ; (2) <=> x ( x + 1) = 0 <=> x = 0 hoặc x = -1  => Phương trình ban đầu có 2 nghiệm  x = 0 hoặc x = -1 

TH2: Với a khác 0 

  • b = 0 ; (1) <=> \(a^3x\left(x+1\right)=0\Leftrightarrow x\left(x+1\right)=0\)<=> x = 0 hoặc x = - 1

=> phương trình ban đầu có 2 nghiệm x = 0 hoặc x = -1 

  • b khác 0 ; (1) <=> \(\left(ax+b\right)\left(bx+a\right)\left(x+1\right)=0\)

<=> x = -b/a hoặc x = -a/b hoặc x = - 1

=> Phương trình ban đầu có 3 nghiệm 

Kết luận:...

5 tháng 8 2020

Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :

\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)

Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)

\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)

Vì n nguyên 

\(\Rightarrow2n\in\left\{0;2\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

5 tháng 8 2020

Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)   

=> \(2n^2+3n+3⋮2n-1\)

=> \(4n^2+6n+6⋮\left(2n-1\right)\)

=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)

Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)

=> \(10⋮\left(2n-1\right)\)

=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)

=> n = ...... 

5 tháng 8 2020

Với a; b ; c  khác 0

Ta có: 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}\)(1)

Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)(2)

\(\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}=\frac{ax+by+cz}{a^2+b^2+c^2}\)(3)

Từ (1) ; (2) ; (3) 

=> \(\frac{ax+by+cz}{a^2+b^2+c^2}\)\(=\frac{x^2+y^2+z^2}{ax+by+cz}\)

=> \(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

5 tháng 8 2020

Do: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) => \(\frac{x}{a}=\frac{y}{b};\frac{y}{b}=\frac{z}{c};\frac{z}{c}=\frac{x}{a}\)

<=> \(ay=bx;bz=cy;az=cx\)

<=> \(\left(ay-bx\right)=0;bz-cy=0;az-cx=0\)

<=> \(\left(ay-bx\right)^2+\left(yc-bz\right)^2+\left(az-cx\right)^2=0\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2=2abxy+2bcyz+2cazx\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2+a^2x^2+b^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2cazx\)<=> \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

=> Ta có ĐPCM

5 tháng 8 2020

Bg

Bg

Ta có: x chia 7 dư 2, y chia 7 dư 5. (x, y thuộc Z)

=> x = 7a + 2 và y = 7b + 5   (a, b thuộc Z)

=> xy = (7a + 2)(7b - 5)

=> xy = 7b(7a + 2) - 5(7a + 2)

Vì 7b(7a + 2) \(⋮\)7

Nên ta xét 5(7a + 2):

5(7a + 2) = 5.7a + 5.2

= 35a + 10

Mà 35a \(⋮\)7

=> 35a + 10 chia 7 dư 10

=> xy chia 7 dư 10

5 tháng 8 2020

x chia 7 dư 2 => x có dạng 7k + 2 ( k thuộc Z )

y chia 7 dư 5 => y có dạng 7k + 5 ( k thuộc Z )

xy = ( 7k + 2 )( 7k + 5 ) = 49k2 + 49k + 10 = 49k2 + 49k + 7 + 3 

=> xy chia 7 dư 3 

Không chắc nhớ