2. Cho góc xOy khác góc bẹt, Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot kẻ đường
thẳng vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B.
a) CMR: Ot là đường trung trực của AB
b) Lấy điểm C thuộc tia Ot, chúng minh CA = CB và góc OAC = góc OBC
3. Cho tam giác ABC. Các tia phân giác góc B và C cắt nhau ở I. Vẽ ID vuông góc với AB (D
thuộc AB), IE ⊥BC ( E thuộc BC), IF⊥AC ( F thuộc AC ). Chứng minh : ID=IE=IF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x=3y=5z
⇒2x/30=3y/30=5z/30⇒2x/30=3y/30=5z/30
⇒x/15=y/10=z/6⇒x/15=y/10=z/6
Áp dụng tc của dãy tỉ số bằng nhau Ta có
x/15=y/10=z/6=x+y+z/15+10−6=95/19=5
=>x=75
y=50
z=30
Vậy x=75;y=50;z=30
Trả lời :
\(\left(+\right)\frac{0,16}{0,32}=\frac{0,4}{0,8}\)
\(\left(+\right)\frac{0,16}{0,4}=\frac{0,32}{0,8}\)
\(\left(+\right)\frac{0,8}{0,4}=\frac{0,32}{0,16}\)
\(\left(+\right)\frac{0,8}{0,32}=\frac{0,4}{0,16}\)
Gọi số học sinh lớp 7A và 7B lần lượt là \(x,y\)(em) \(x,y\inℕ^∗\).
Số học sinh lớp 7A nhiều hơn số học sinh lớp 7B là \(3\)em nên \(x-y=3\).
Tỉ số học sinh của hai lớp bằng \(\frac{12}{11}\)nên \(\frac{x}{y}=\frac{12}{11}\Leftrightarrow\frac{x}{12}=\frac{y}{11}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{11}=\frac{x-y}{12-11}=\frac{3}{1}=3\)
\(\Leftrightarrow\hept{\begin{cases}x=3.12=36\\y=3.11=33\end{cases}}\)(thỏa mãn)
b) Ta có (4x - 3)(5 + x) = 0
\(\Rightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{4};-5\right\}\)là nghiệm đa thức
c) x2 + 2x = 0
\(\Rightarrow\)x(x + 2) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy \(x\in\left\{0;-2\right\}\)là nghiệm đa thức
d) Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+4\ge4\forall x\)
Vậy đa thức vô nghiệm
e) x2 - 3x + 2 = 0
\(\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy \(x\in\left\{1;2\right\}\)là nghiệm đa thức
Trả lời:
\(b,\left(4x-3\right)\left(5+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}}\)
Vậy x = 3/4; x = - 5 là nghiệm của đa thức.
\(c,x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy x = 0; x = - 2 là nghiệm của đa thức.
\(d,\left(x-2\right)^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=-4\) (vô lí)
Vậy đa thức vô nghiệm.
\(e,x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy x = 2; x = 1 là nghiệm của đa thức.