Cho hình vuông ABCD .Gọi E,F lần lượt là trung điểm của AB và AC
a) C/m DF=BC và CE vuông góc DF tại O
b) kẻ AM vuông góc vs DF cắt CD tại K.C/m KC =KD
c) C/m AO=AB
d) C/m diện tích DFC =1/4 diện tích ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
a) M = -x2 - 4x + 2 = -x2 - 4x - 4 + 6 = -( x2 + 4x + 4 ) + 6 = -( x + 2 )2 + 6
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+6\le6\)
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy MMax = 6 , đạt được khi x = -2
b) N = -2y2 - 3y + 5 = -2( y2 + 3/2y + 9/16 ) + 49/8 = -2( y + 3/4 )2 + 49/8
\(-2\left(y+\frac{3}{4}\right)^2\le0\forall y\Rightarrow-2\left(y+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> y + 3/4 = 0 => y = -3/4
Vậy NMax = 49/8 , đạt được khi y = -3/4
c) P = ( 2 -x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy PMax = 9 , đạt được khi x = -1
( 2m - 3 )( 3n - 2 ) - ( 3m - 2 )( 2n - 3 )
= 6mn - 4m - 9n + 6 - ( 6mn - 9m - 4n + 6 )
= 6mn - 4m - 9n + 6 - 6mn + 9m + 4n - 6
= 5m - 5n
= 5( m - n ) \(⋮\)5 với mọi m, n thuộc Z ( đpcm )
a, \(3x-5=13\Leftrightarrow3x=18\Leftrightarrow x=6\)
b, \(4x-2=3x+1\Leftrightarrow x=3\)
c, \(5\left(x-3\right)-2\left(x-5\right)=58\Leftrightarrow5x-15-2x+10=58\)
\(\Leftrightarrow3x-5=58\Leftrightarrow3x=63\Leftrightarrow x=21\)
d, \(mx+5x=m^2m^2-25\Leftrightarrow x\left(m+5\right)=m^4-25\)
1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm
1) \(x^4+2x^3-9x^2-10x-24\)
\(=x^4+4x^3+x^2-2x^3-8x^2-2x-2x^2-8x-2\)
\(=x^2.\left(x^2+4x+1\right)-2x.\left(x^2+4x+1\right)-2.\left(x^2+4x+1\right)\)
\(=\left(x^2+4x+1\right)\left(x^2-2x-2\right)\)
2) \(6x^4+7x^3+5x^2-x-2\)
\(=6x^4-3x^3+10x^3-5x^2+10x^2-5x+4x-2\)
\(=3x^3\left(2x-1\right)+5x^2\left(2x-1\right)+5x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(3x^3+5x^2+5x+2\right)\)
\(=\left(2x-1\right)\left(3x^2+2x^2+3x^2+2x+3x+2\right)\)
\(=\left(2x-1\right)\left(3x+2\right)\left(x^2+x+1\right)\)
3) \(2x^4+3x^3+2x^2-1\)
\(=2x^4+2x^3+x^3+x^2+x^2+x-x-1\)
\(=\left(x+1\right)\left(2x^3+x^2+x-1\right)\)
\(=\left(x+1\right)\left(2x-1\right)\left(x^2+x+1\right)\)
4) \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(x^2+x+1\right)\)
Câu a) Nhầm đề rồi nhé
a) * Áp dụng đlí pytago: \(AB^2+BC^2=AC^2\) . Do ABCD là hình vuông => \(AB=BC\)
=> \(2BC^2=AC^2\)
=> \(BC\sqrt{2}=AC\)(1)
Xét tam giác ADC vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AC
=> \(DF=\frac{1}{2}AC\)
=> \(2DF=AC\)(2)
TỪ (1) VÀ (2) => \(BC\sqrt{2}=2DF\)
=> \(BC=DF\sqrt{2}\)
Check lại đề đi tui không hiểu O là điểm gì và CE ko vuông góc được với DF đâu nhaaaaa