tìm số abc (a có thể bằng 0) .biết 345abc chia hết cho 3;7;8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^5+x+1=0\)
\(\Leftrightarrow x^5-x^2+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x^3-1\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)x^2\left(x-1\right)+\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^3-x^2+1\right)=0\)
.....
a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)
A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
=\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)
=\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)
=\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)
= \(\frac{-4}{x+2}\)
b) Ta có : \(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)
Để A = -1/2 thì
\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)
\(\Leftrightarrow-\left(x+2\right)=-8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)
c) Để A =0,5 thì
\(\frac{-4}{x+2}=0,5\)
\(\Leftrightarrow-8=x+2\)
\(\Leftrightarrow x=-10\)
d) Để A \(\inℤ\)thì
\(-4⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-4\right)\)
\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)
Lập bảng giá trị
x+2 | -1 | 1 | -2 | 2 | -4 | 4 |
x | -3 | -1 | -4 | 0 | -6 | 2 |
Mà \(x\ne0\)và \(x\ne2;-2\)
\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)
Bài làm:
a) đkxđ: \(x\ne\pm1\)
Ta có:
\(M=\frac{x+1}{x^2-1}-\frac{x^2+2}{x^3-1}-\frac{x+1}{x^2+x+1}\)
\(M=\frac{1}{x-1}-\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x+1}{x^2+x+1}\)
\(M=\frac{x^2+x+1-x^2-2-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x-1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x\left(1-x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{x}{x^2+x+1}\)
b) Mà x khác 1
=> x = -2, khi đó:
\(M=-\frac{-2}{4-2+1}=\frac{2}{3}\)
Natri đihđrophotphat trong phân tử có 1 nguyên tử natri 2 nguyên tử hidro 1 nguyên tử photpho và 4 nguyên tử ôxi.
=> Natri đihđrophotphat sẽ có công thức hóa học là: \(NaH_2PO_4\)
Đường glucozo biết trong phân tử có 6 nguyên tử cacbon 12 nguyên tử hidro va 6 nguyên tử ôxi.
=> Đường glucozo có công thức hóa học là: \(C_6H_{12}O_6\)
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Tìm x biết
x^4 - 2x^3 -x^2 - 2x+1=0
E mới lên lớp 8 mong anh chị đừng áp dụng cách cao siêu quá ạ -.-
Cái phương pháp hệ số bất định bạn chưa học à, học phân tích đa thức thì mình nghĩ học rồi chứ nhỉ, hay cần mình giải hẳn chỗ đó ra không bạn?
Bài làm :
- Cách 1: x2- 6x + 8
= x2 - 2x - 4x + 8
= x (x - 2) - 4(x -2)
= (x - 4)(x -2)
- Cách 2: x2 - 6x + 8
= x2 - 6x + 9 - 1
= ( x - 3)2 - 1
=( x -3 - 1)( x- 3 + 1)
= (x - 4)(x -2)
- Cách 3: x2 - 6x + 8
= x2 - 16 - 6x + 24
=( x - 4)(x + 4 ) - 6 (x - 4)
=(x - 4)(x + 4 - 6)
= (x - 4)(x -2)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
mình cũng được tròn 3 cách
c1 \(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
c2 \(x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-4\right)\left(x-2\right)\)
c3 Gỉa sử \(x^2-6x+8=\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
Cân bằng hệ số ta được \(\hept{\begin{cases}a+b=-6\\ab=8\end{cases}< =>\orbr{\begin{cases}a=-4\\b=-2\end{cases}or\orbr{\begin{cases}a=-2\\b=-4\end{cases}}}}\)
Vậy ta có : \(\left(x+a\right)\left(x+b\right)=\left(x-2\right)\left(x-4\right)\)
a)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{100.101}{2}=5050\)
b)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1=2^{128}\)
c)
\(C=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)
\(C=2c^2\)