K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Ta có : \(x^5+x+1=0\)

\(\Leftrightarrow x^5-x^2+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x^3-1\right)+\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)x^2\left(x-1\right)+\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^3-x^2+1\right)=0\)

.....

17 tháng 8 2020

x5+x+1

x5-x2+x2+x+1

x2(x3-1)+(x2+x+1)

x2(x-1)(x2+x+1)+(x2+x+1)

[x2(x-1)](x2+x+1)

18 tháng 8 2020

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

17 tháng 8 2020

Bài làm:

a) đkxđ: \(x\ne\pm1\)

Ta có:

\(M=\frac{x+1}{x^2-1}-\frac{x^2+2}{x^3-1}-\frac{x+1}{x^2+x+1}\)

\(M=\frac{1}{x-1}-\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x+1}{x^2+x+1}\)

\(M=\frac{x^2+x+1-x^2-2-\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(M=\frac{x-1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(M=\frac{x\left(1-x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{x}{x^2+x+1}\)

b) Mà x khác 1

=> x = -2, khi đó:

\(M=-\frac{-2}{4-2+1}=\frac{2}{3}\)

17 tháng 8 2020

Natri đihđrophotphat trong phân tử có 1 nguyên tử natri 2 nguyên tử hidro 1 nguyên tử photpho và 4 nguyên tử ôxi.

=> Natri đihđrophotphat sẽ có công thức hóa học là:     \(NaH_2PO_4\)

Đường glucozo biết trong phân tử có 6 nguyên tử cacbon 12 nguyên tử hidro va 6 nguyên tử ôxi.

=> Đường glucozo có công thức hóa học là:       \(C_6H_{12}O_6\)

17 tháng 8 2020

đợi trả lời lâu quá thôi tự làm.

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

17 tháng 8 2020

Lúc chiều mình giải cho bạn rồi mà -.-?

17 tháng 8 2020

Cái phương pháp hệ số bất định bạn chưa học à, học phân tích đa thức thì mình nghĩ học rồi chứ nhỉ, hay cần mình giải hẳn chỗ đó ra không bạn?

17 tháng 8 2020

                                         Bài làm :

  •  Cách 1:  x2- 6x + 8 

                          = x2 - 2x - 4x + 8

                          = x (x - 2) - 4(x -2)

                          = (x - 4)(x -2)

  • Cách 2: x2 - 6x + 8  

                     = x2 - 6x + 9 - 1

                     = ( x - 3)2 - 1

                     =( x -3 - 1)( x- 3 + 1)

                     = (x - 4)(x -2)

  •  Cách 3: x2 - 6x + 8  

                       = x2 - 16 - 6x + 24

                       =( x - 4)(x + 4 ) - 6 (x - 4)

                       =(x - 4)(x + 4 - 6)

                       = (x - 4)(x -2) 

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


 

17 tháng 8 2020

mình cũng được tròn 3 cách 

c1 \(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

c2 \(x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-4\right)\left(x-2\right)\)

c3 Gỉa sử \(x^2-6x+8=\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)

Cân bằng hệ số ta được \(\hept{\begin{cases}a+b=-6\\ab=8\end{cases}< =>\orbr{\begin{cases}a=-4\\b=-2\end{cases}or\orbr{\begin{cases}a=-2\\b=-4\end{cases}}}}\)

Vậy ta có : \(\left(x+a\right)\left(x+b\right)=\left(x-2\right)\left(x-4\right)\)

17 tháng 8 2020

a)

\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(A=100+99+98+97+...+2+1\)

\(A=\frac{100.101}{2}=5050\)

b)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(B=2^{128}-1+1=2^{128}\)

c)

\(C=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)

\(C=2c^2\)

17 tháng 8 2020

thanks bạn nhaaa :3