K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Sửa đề:

\(C=x^2-4xy+5y^2-10y+6\)

\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)

\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

20 tháng 8 2020

\(D=x^2-2xy+2y^2-2x-10y+20\)

\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)

\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

20 tháng 8 2020

2. 

a. \(x^2-6x+5=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b. \(x^2-2x-24=0\)

\(\Leftrightarrow\left(x^2-6x\right)+\left(4x-24\right)=0\)

\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

20 tháng 8 2020

x2+(2a+b)xy+2aby2

=x2+2axy+bxy+2aby2

=(x2+bxy)+(2axy+2aby2)

=x(x+by)+2ay(x+by)

=(x+by)(x+2ay)

cảm ơn bn

20 tháng 8 2020

\(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3+\left(x-y\right)^3\right]\)

\(=x\left[\left(2y\right)^3+\left(x-y\right)^3\right]\)

\(=x\left(2y+x-y\right)\left[\left(2y\right)^2-2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(x+y\right)\left(4y^2-2xy+2y^2+x^2-2xy+y^2\right)\)

\(=x\left(x+y\right)\left(7y^2+x^2-4xy\right)\)