K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

Câu Hỏi:

* Hệ Phương Trình nào vậy bạn ?

5 tháng 2 2020

sao câu hỏi ko rõ ràng vậy  

16 tháng 1 2020

\(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}=\frac{\left(x^4+y^4+z^4+t^4\right)\left(x^2+y^2+z^2+t^2\right)}{\left(x^3+y^3+z^3+t^3\right)\left(x^2+y^2+z^2+t^2\right)}\)

\(\ge\frac{x^3+y^3+z^3+t^3}{x^2+y^2+z^2+t^2}=\frac{\left(x^3+y^3+z^3+t^3\right)\left(x+y+z+t\right)}{\left(x^2+y^2+z^2+t^2\right)\left(x+y+z+t\right)}\)

\(\ge\frac{x^2+y^2+z^2+t^2}{x+y+z+t}\ge\frac{\left(x+y+z+t\right)^2}{4\left(x+y+z+t\right)}=\frac{1}{4}\)

Dấu "=" xảy ra tại x=y=z=t=1/4

Bài làm có tham khảo của GOD Đạt Hồ

19 tháng 1 2020
Cho mình hỏi là bạn ấy dùng bất đẳng thức gì vây
15 tháng 1 2020

\(\frac{3}{x\sqrt{x}}=3\sqrt[3]{y^2z^2t^2}\le yz+zt+ty\)

\(\Sigma\frac{1}{x^3\left(yz+zt+ty\right)}\ge\Sigma\frac{1}{\frac{3x^3}{x\sqrt{x}}}=\Sigma\frac{\sqrt{x}}{3x^2}\ge\frac{4}{3}\sqrt[4]{\frac{\sqrt{xyzt}}{\left(xyzt\right)^2}}=\frac{4}{3}\)

15 tháng 1 2020

Câu hỏi của Ryan Park - Toán lớp 9 - Học toán với OnlineMath

Chứng minh đc:

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\)

\(\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

\(\ge\frac{4}{3}.\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}\)