K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)

\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)

b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P 

Tự làm nốt nhé 

24 tháng 8 2020

b, P=x+2x+3−5x2+3x−2x−6+12−xP=x+2x+3−5x2+3x−2x−6+12−x

=x+2x+3−5(x+3)(x−2)−1x−2=x+2x+3−5(x+3)(x−2)−1x−2

=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)

=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)

=x2−4x+3x−12(x+3)(x−2)=x2−4x+3x−12(x+3)(x−2)

=(x−4)(x+3)(x+3)(x−2)=x−4x−2=(x−4)(x+3)(x+3)(x−2)=x−4x−2

c, Để P=−34P=−34

⇔x−4x−2=−34⇔x−4x−2=−34

⇔4(x−4)=−3(x−2)⇔4(x−4)=−3(x−2)

⇔4x−16+3x−6=0⇔4x−16+3x−6=0

⇔7x−22=0⇔7x−22=0

⇔x=227⇔x=227

d, Để P có giá trị nguyên

⇔x−4⋮x−2⇔x−4⋮x−2

⇔(x−2)−2⋮x−2⇔(x−2)−2⋮x−2

⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}

x−2x−21-12-2
x3140

e,

x2−9=0x2−9=0

⇒x2=9⇒[x=3x=−3⇒x2=9⇒[x=3x=−3

Với x=3,có :

x−4x−2=3−43−2=−11=−1x−4x−2=3−43−2=−11=−1

Với x=-3,có :

x−4x−2=−3−4−3−2=75x−4x−2=−3−4−3−2=75

24 tháng 8 2020

Ta có hằng đẳng thức sau: \(a^3+3.ab.\left(a+b\right)+b^3=\left(a+b\right)^3\)       <1 trong 7 hằng đẳng thức đáng nhớ>

Sử dụng hằng đẳng thức trên, ta có:

a) \(A=97^3+3.3.97.\left(97+3\right)+3^3=\left(97+3\right)^3=100^3=1000000.\)

b) \(B=175^3+3.25.175.\left(175+25\right)+25^3=\left(175+25\right)^3=200^3=8000000.\)

c) \(C=186^3+3.186.214.\left(186+214\right)+214^3=\left(186+214\right)^3=400^3.\)

\(=64000000.\)

24 tháng 8 2020

M=a2+b2+c2 mà a2=2(a+c+1)(a+b+1)

=> M=2(a+c+1)(a+b+1)+b2+c2

=(2a+2c+2)(a+b+1)+b2+c2

=2a2+2ac+2a+2ab+2bc+2b+2a+2c+2+b2+c2

=a2+a2+b2+c2+2ab+2ac+2bc+2a+2a+ 2b+2c+2

=(a2+b2+c2+2ab+2ac+2bc)+4a+2b+2c+2+a2

=(a+b+c)2+4a+2b+2c+2+a2

Mà a+b+c=0

=>02+4a+2b+2c+2+a2

=a2+4a+2b+2c+2

ko chắc đâu nhé ahihi :>>>

24 tháng 8 2020

tính ra kết quả đc ko bạn

24 tháng 8 2020

A E F C M B

Qua M kẻ MF // AC , cắt AC tại F

Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)

Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)

Từ (1) và (2) suy ra AE = EF = FC => đpcm

24 tháng 8 2020

Qua M kẻ MF // AC , cắt AC tại F

Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)

Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)

Từ (1) và (2) suy ra AE = EF = FC => đpcm

24 tháng 8 2020

\(x\left(x+y\right)-xy\left(x+y\right)=x^2+xy-x^2y-xy^2=-x\left(x+y\right)\left(y-1\right)\)

Thay x = 1 ; y = -5 ta có : 

\(-1\left(1-5\right)\left(-5-1\right)=-1\left(-4\right)\left(-6\right)=-24\)

24 tháng 8 2020

\(x\left(x+y\right)-xy\left(x+y\right)\)

\(=\left(x-xy\right)\left(x+y\right)\)

\(=x\left(1-y\right)\left(x+y\right)\)

Thay x = 1 ; y = -5 vào biểu thức ta có :

\(1.\left[1-\left(-5\right)\right].\left[1+\left(-5\right)\right]=1.6.\left(-4\right)=-24\)

Vậy tại x = 1 ; y = -5 thì biểu thức x(x+y) - xy(x+y) có giá trị = -24