cho \(\Delta ABC\) có trung tuyến AM. Lấy điểm D trên cạnh AC sao cho AD =\(\frac{1}{2}\)DC.Kẻ tia Mx song song BD và cắt AC tại E. Gọi I là giao điểm của AM và BD.CMR :
a) AD=DE=EC
b) \(S\Delta AIB=S\Delta IBM\)
c)\(S\Delta ABC=2S\Delta IBC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
b, P=x+2x+3−5x2+3x−2x−6+12−xP=x+2x+3−5x2+3x−2x−6+12−x
=x+2x+3−5(x+3)(x−2)−1x−2=x+2x+3−5(x+3)(x−2)−1x−2
=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)
=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)
=x2−4x+3x−12(x+3)(x−2)=x2−4x+3x−12(x+3)(x−2)
=(x−4)(x+3)(x+3)(x−2)=x−4x−2=(x−4)(x+3)(x+3)(x−2)=x−4x−2
c, Để P=−34P=−34
⇔x−4x−2=−34⇔x−4x−2=−34
⇔4(x−4)=−3(x−2)⇔4(x−4)=−3(x−2)
⇔4x−16+3x−6=0⇔4x−16+3x−6=0
⇔7x−22=0⇔7x−22=0
⇔x=227⇔x=227
d, Để P có giá trị nguyên
⇔x−4⋮x−2⇔x−4⋮x−2
⇔(x−2)−2⋮x−2⇔(x−2)−2⋮x−2
⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}
x−2x−2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
e,
x2−9=0x2−9=0
⇒x2=9⇒[x=3x=−3⇒x2=9⇒[x=3x=−3
Với x=3,có :
x−4x−2=3−43−2=−11=−1x−4x−2=3−43−2=−11=−1
Với x=-3,có :
x−4x−2=−3−4−3−2=75x−4x−2=−3−4−3−2=75
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có hằng đẳng thức sau: \(a^3+3.ab.\left(a+b\right)+b^3=\left(a+b\right)^3\) <1 trong 7 hằng đẳng thức đáng nhớ>
Sử dụng hằng đẳng thức trên, ta có:
a) \(A=97^3+3.3.97.\left(97+3\right)+3^3=\left(97+3\right)^3=100^3=1000000.\)
b) \(B=175^3+3.25.175.\left(175+25\right)+25^3=\left(175+25\right)^3=200^3=8000000.\)
c) \(C=186^3+3.186.214.\left(186+214\right)+214^3=\left(186+214\right)^3=400^3.\)
\(=64000000.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
M=a2+b2+c2 mà a2=2(a+c+1)(a+b+1)
=> M=2(a+c+1)(a+b+1)+b2+c2
=(2a+2c+2)(a+b+1)+b2+c2
=2a2+2ac+2a+2ab+2bc+2b+2a+2c+2+b2+c2
=a2+a2+b2+c2+2ab+2ac+2bc+2a+2a+ 2b+2c+2
=(a2+b2+c2+2ab+2ac+2bc)+4a+2b+2c+2+a2
=(a+b+c)2+4a+2b+2c+2+a2
Mà a+b+c=0
=>02+4a+2b+2c+2+a2
=a2+4a+2b+2c+2
ko chắc đâu nhé ahihi :>>>
![](https://rs.olm.vn/images/avt/0.png?1311)
A E F C M B
Qua M kẻ MF // AC , cắt AC tại F
Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)
Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)
Từ (1) và (2) suy ra AE = EF = FC => đpcm
Qua M kẻ MF // AC , cắt AC tại F
Ta có : {MF//DEAD=DM{MF//DEAD=DM => DE là đường trung bình tam giác AMF => AE = EF (1)
Lại có : {MF//BEBM=MC{MF//BEBM=MC => MF là đường trung bình tam giác BEC => EF = FC (2)
Từ (1) và (2) suy ra AE = EF = FC => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\left(x+y\right)-xy\left(x+y\right)=x^2+xy-x^2y-xy^2=-x\left(x+y\right)\left(y-1\right)\)
Thay x = 1 ; y = -5 ta có :
\(-1\left(1-5\right)\left(-5-1\right)=-1\left(-4\right)\left(-6\right)=-24\)
\(x\left(x+y\right)-xy\left(x+y\right)\)
\(=\left(x-xy\right)\left(x+y\right)\)
\(=x\left(1-y\right)\left(x+y\right)\)
Thay x = 1 ; y = -5 vào biểu thức ta có :
\(1.\left[1-\left(-5\right)\right].\left[1+\left(-5\right)\right]=1.6.\left(-4\right)=-24\)
Vậy tại x = 1 ; y = -5 thì biểu thức x(x+y) - xy(x+y) có giá trị = -24