Cho tam giác ABC, gọi M1 là một điểm tuỳ ý, M2 đối xứng với M1 qua A, M3 đối xứng với M2 qua B, M4 đối xứng với M3 qua C. Chứng minh: Trung điểm của M1M4 là một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ta có: (a+b+c)2 = 3.(ab+bc+ca)
=> a2 + b2 + c2 + 2.(ab+bc+ca) = 3.(ab+bc+ca)
=> a2 + b2 + c2 + 2.(ab+bc+ca) - 3.(ab+bc+ca) = 0
=> a2 + b2 + c2 - ab - bc - ca = 0
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
(a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ca+c2) = 0
(a-b)2 + (b-c)2 + (a-c)2 = 0
mà \(\left(a-b\right)^2;\left(b-c\right)^2;\left(a-c\right)^2\ge0.\)
=> a-b = 0 => a = b
b-c = 0 => b = c
=> a=b=c
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left[\left(x^2+1\right)^2-x^2\right]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(3x^2-3x+3\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=\left(x^2+x+1\right).2.\left(x^2-2x+1\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)
Đặt \(\hept{\begin{cases}n+19=t^2\\n-57=k^2\end{cases}\left(t,k\in N\right)\Rightarrow\left(n+19\right)-\left(n-57\right)=t^2-k^2\Rightarrow}76=\left(t-k\right)\left(t+k\right)\)
Ta có: \(76=1.76=2.38=4.19\)
Mà t - k và t + k là 2 số cùng tính chẵn lẻ, \(t-k< t+k\)
Nên \(\hept{\begin{cases}t-k=2\\t+k=38\end{cases}\Rightarrow t=\left(2+38\right):2=20}\)
Ta có: \(n+19=t^2\)
Thay t = 20, tính được n = 381
Chúc bạn học tốt.
Gọi S là trung điểm của M1M4. Ta đi c/m S là điểm cố định.
Trong \(\Delta\)M1M2M4 có: A là trung điểm M1M2; S là trung điểm M1M4 => AS là đường trung bình \(\Delta\)M1M2M4
=> AS = M2M4 /2 và AS // M2M4 (1)
Trong \(\Delta\)M2M3M4 có: B là trung điểm M2M3 ; C là trung điểm M3M4 => BC là đường trung bình \(\Delta\)M2M3M4
=> BC = M2M4 /2 và BC // M2M4 (2)
Từ (1) và (2) suy ra: AS = BC và AS // BC => Tứ giác ABCS là hình bình hành.
Ta thấy: Hình bình hành ABCS có 3 đỉnh A;B;C cố định nên đỉnh S cố định
=> Trung điểm của M1M4 là một điểm cố định (đpcm).