cho x,y,z là các số dương . Tìm GTNN của biểu thức P=x/y+z + y/z+x + z/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a^2+b^2-a^2b^2+ab-a-b\)
\(=\left(a^2-a^2b^2\right)-\left(b-b^2\right)-\left(a-ab\right)\)
\(=a^2\left(1-b^2\right)-b\left(1-b\right)-a\left(1-b\right)\)
\(=a^2\left(1-b\right)\left(1+b\right)-b\left(1-b\right)-a\left(1-b\right)\)
\(=\left(1-b\right)\left(a^2+a^2b-b-a\right)\)
\(=\left(1-b\right)\left[a\left(a-1\right)+b\left(a^2-1\right)\right]\)
\(=\left(1-b\right)\left[a\left(a-1\right)+b\left(a-1\right)\left(a+1\right)\right]\)
\(=\left(1-b\right)\left(a-1\right)\left(ab+a+b\right)\)
Chúc bạn học tốt.


\(A=2003.2005=\left(2004-1\right)\left(2004+1\right)=2004^2-1< 2004^2=B\)
Vậy \(A< B\).Chúc bạn học tốt.
\(A=2003\cdot2005\)
\(A=\left(2004-1\right)\left(2004+1\right)\)
\(A=2004^2-1< 2004^2=B\)
Vậy \(A< B\)

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
hay \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\)
Thay a = b = c = 0 vào M rồi tính như bình thường nha bạn!
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}\Leftrightarrow a=b=c=0}\)
\(\Rightarrow\)\(M=\left(a-2018\right)^{2019}+\left(b-2018\right)^{2019}-\left(c+2018\right)^{2019}\)
\(\Rightarrow\)\(M=-2018^{2019}-2018^{2019}-2018^{2019}\)
\(\Rightarrow\)\(M=-3.2018^{2019}\)
Chúc bạn học tốt ~

1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(\Rightarrow P+3=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\)
\(P+3=\frac{x+y+z}{y+z}+\frac{y+x+z}{z+x}+\frac{z+x+y}{x+y}\)
\(P+3=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)
\(\Rightarrow2P+6=\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)
Đặt \(\hept{\begin{cases}x+y=a\\y+z=b\\z+x=c\end{cases}}\)
\(\Rightarrow2P+6=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(2P+6=\left(\frac{a}{b}+\frac{b}{a}+1\right)+\left(\frac{b}{c}+\frac{c}{b}+1\right)+\left(\frac{c}{a}+\frac{a}{c}+1\right)\)
\(2P+6=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+3\)
\(\Rightarrow2P+3=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)
Ta có: \(x;y;z>0\)
Áp dụng bất đẳng thức AM-GM ta có:
\(2P+3\ge2.\sqrt{\frac{a}{b}.\frac{b}{a}}+2.\sqrt{\frac{b}{c}.\frac{c}{b}}+2.\sqrt{\frac{c}{a}.\frac{a}{c}}=2+2+2=6\)
\(\Rightarrow2P\ge3\)
\(\Rightarrow P\ge1,5\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Vậy \(P_{min}=1,5\Leftrightarrow a=b=c\)
Tham khảo nhé~
BĐT Nesbit à? =)))
ĐK: x,y,z > 0.Ta có: \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(=\frac{x^2}{xy+xz}+\frac{y^2}{yz+xy}+\frac{z^2}{xz+yz}\). Áp dụng BĐT Cauchy - Schwarz,ta có:
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{yz+xy}+\frac{z^2}{zx+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}^{\left(đpcm\right)}\)