Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\\3x^2-xy+3y^2=13\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
Mấy chế giúp mk zới...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
1, gọi chiều cao của bố là a (cm) (a>76)
gọi chiều cao của con là b (cm) (b>0)
vì bố cao hơn con 76cm nên ta có a-b = 76 (1)
vì 5 lần chiều cao của bố gấp 9 lần chiều cao của con nên ta có 5a- 9b = 0 (2)
từ (1) và (2) ta có hệ phương trình :
bạn tự giải hệ nha kết quả là
chiều cao của con là 95cm , chiều cao của bố là 171 cm
2, gọi số tờ giấy bạc loại 50000 đồng là a (tờ) (0<a<210)
gọi số tờ giấy bạc loại 100000 đồng là b (tờ) (0<b<210)
vì cô bình gửi vào ngân hàng 15 triệu đồng nên ta có 50000a + 100000b = 15000000 => a + 2b = 300 (1)
vì có tất cả 210 tờ nên ta có a+b = 210 (2)
từ (1) và (2) ta có hệ phương trình
bn tự giải hệ nha kết quả là: loại 50000 có 20 tờ, loại 100000 có 90 tờ
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
Chúng ta có nhận xét: \(\left(2x-1\right)\left(5-x\right)=-2x^2+11x-5\)
ĐK: \(\hept{\begin{cases}2x-1\ge0\\5-x\ge0\end{cases}\Leftrightarrow}\frac{1}{2}\le x\le5\)(1)
Với những bài có nhận xét như trên. Thì hầu như chúng ta sẽ làm như sau:
Đăt \(\sqrt{2x-1}+\sqrt{5-x}=t\)( \(t\ge0\))
<=> \(2x-1+5-x+2\sqrt{-2x^2+11x-5}=t^2\)( bình phương hai vế )
<=> \(x+4+2\sqrt{-2x^2+11x-5}=t^2\)
<=> \(x+2\sqrt{-2x^2+11x-5}=t^2-4\)
<=> \(x-2+2\sqrt{-2x^2+11x-5}=t^2-6\)
Phương trình ban đầu trở thành:
\(t=t^2-6\)với \(t\ge0\)
<=> \(t^2-t-6=0\)
<=> \(\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
Với t = 3 ta có:
\(\sqrt{2x-1}+\sqrt{5-x}=3\)
<=> \(x+4+2\sqrt{\left(2x-1\right)\left(5-x\right)}=9\)
<=> \(2\sqrt{\left(2x-1\right)\left(5-x\right)}=5-x\)
<=> \(\orbr{\begin{cases}5-x=0\\2\sqrt{2x-1}=\sqrt{5-x}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\4\left(2x-1\right)=5-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)( thỏa mãn đk (1))
Vậy:...
5x+5y= 4x-3
x+5y = -3
Mà x+3y = 3/7
Suy ra:(x+5y)- (x+3y) = -3-3/7
2y= -24/7
y= -12/7
Thay y =12/7 vào biểu thức: x+3y= 3/7
Suy ra x+ 36/7= 3/7
x= -33/7
Từ hệ 1 suy ra: 5x + 5y = 4x-3 <=> x + 5y = -3
Bấm Mode Setup ->5->1
x=39/7
y=-12/7
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?