Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), (O1) là đường tròn đi qua các điểm C, D, M và (O2) là đường tròn đi qua các điểm B, D, N. Gọi DQ là đường kính của đường tròn (O1), Dp là đường kính của đường tròn (O2) . CMR: P,H,Q thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi thời gian chảy vào đầy bể là \(a\left(h\right)\left(a>0\right)\)
Gọi thời gian chảy ra hết bể là \(b\left(h\right)\left(b>0\right)\)
\(1h\)vòi chảy vào chảy được \(\frac{1}{a}\left(bể\right)\)
\(1h\)vòi chảy ra chảy được \(\frac{1}{b}\left(bể\right)\)
Ta có: \(\frac{1}{\frac{1}{a}-\frac{1}{b}}=6\Rightarrow\frac{1}{a}-\frac{1}{b}=\frac{1}{6}\left(h\right)\)
\(b-a=8\Rightarrow b=8+a\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\frac{1}{a}-\frac{1}{a+8}=\frac{1}{6}\)
\(\Rightarrow\frac{a+8-a}{a\left(a+8\right)}=\frac{1}{6}\)
\(\Leftrightarrow a^2+8a=48\)
\(\Leftrightarrow a^2+8a-48=0\)
\(\Leftrightarrow a=4\)
Vậy ............

Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?
Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.
Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.
Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.

Hình tự vẽ nha <3
Vẽ \(AH\)cắt \(BC\)tại \(K\)
Ta có: \(AK\perp BC\)
Gọi \(S\)(Khác \(D\)) là giao điểm của 2 đường trong \(O_1;O_2\)
Xét đường tròn \(O_1\)có: \(\widehat{SDB}=\widehat{SMC}\)
Ta có: \(\widehat{SMC}=\widehat{SNA}\Rightarrow AMSN\)nội tiếp.
Mặt khác: \(\widehat{HMA}=\widehat{HNA}=90^0\Rightarrow AMHN\) nội tiếp
Vì vậy 5 điểm \(A,M,S,H,N\)cùng thuộc đường tròn.
\(\widehat{NSA}=\widehat{NHA}\)Mà \(\widehat{NHA}=\widehat{DBN}\Rightarrow\widehat{NSA}=\widehat{DBN}\)
Ta có: \(\widehat{NSA}+\widehat{DSN}=\widehat{DBN}+\widehat{DSN}=180^0\)
\(\Rightarrow A,D,S\)thằng hàng.
Ta lại có: \(\widehat{ASH}=\widehat{HMA}=90^0\Rightarrow HS\perp DA\)
Và: \(\widehat{PSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow PS\perp DA\)
Và: \(\widehat{QSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow QS\perp DA\)
Từ trên ta suy ra: Các đường thẳng \(SH;PS;QS\)trùng nhau.
\(\Rightarrow P,H,Q\)thằng hàng (đpcm)