K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021
Q C O I 1) Xét nửa đường tròn ( O ; R ) ta có: ˆ A M B = 90 ∘ (góc nội tiếp chắn nửa đường tròn) ⇒ ˆ B M Q = 90 ∘ hay ˆ N M Q = 90 ∘ ˆ A P D = 90 ∘ (góc nội tiếp chắn nửa đường tròn) ⇒ ˆ A P Q = 90 ∘ hay ˆ N P Q = 90 ∘ Xét tứ giác M N P Q ta có: ˆ N M Q = 90 ∘ ; ˆ N P Q = 90 ∘ ⇒ ˆ N M Q + ˆ N P Q = 90 ∘ + 90 ∘ = 180 ∘ Mà ˆ N M Q ; ˆ N P Q là hai góc ở vị trí đối nhau Suy ra, tứ giác M N P Q nội tiếp đường tròn Vậy, 4 điểm M , N , P , Q cùng thuộc một đường tròn. 2) Xét tứ giác M N P Q nội tiếp đường tròn ta có: ˆ M Q N = ˆ N P M ( góc nội tiếp cùng chắn cung M N ) Hay ˆ M Q N = ˆ A P M Mà ˆ A P M = ˆ A B M (Góc nội tiếp cùng chắn cung A M trong ( O ) ) ⇒ ˆ M Q N = ˆ A B M Xét tam giác Δ M A B và Δ M N Q ta có: ˆ A B M = ˆ N M Q = 90 ∘ ˆ M Q N = ˆ A B M ( cmt ) ⇒ Δ M A B ∼ Δ M N Q (g.g) 3) Gọi I là trung điểm của Q N Xét Δ M N Q vuông tại M ⇒ N I = I Q = 1 2 Q N Suy ra, I là tâm đường tròn ngoại tiếp Δ M N Q Xét ( O ) , ta có: O M = O B = R ⇒ Δ M O B cân tại O ⇒ ˆ O M B = ˆ O B M Xét ( I ) , ta có: M I = I N ⇒ Δ M I N cân tại I ⇒ ˆ I M N = ˆ I N M ˆ I M O = ˆ I M N + ˆ N M O = ˆ I M N + ˆ M B O = ˆ I M N + ˆ M B A = ˆ I N M + ˆ M Q N = 90 ∘ Hay M I ⊥ M O Vậy M O là tiếp tuyến của đường tròn ngoại tiếp tam giác M N Q tại M . 4) Vì tứ giác A N B C là hình bình hành nên A N / / B C mà A N ⊥ B Q ⇒ C B ⊥ B Q hay ˆ C B Q = 90 ∘ A C / / B N mà B N ⊥ A Q ⇒ A C ⊥ A Q hay ˆ C A Q = 90 ∘ Xét tứ giác A Q B C ta có : ˆ C B Q + ˆ C A Q = 90 ∘ + 90 ∘ = 180 ∘ Mà ˆ C B Q ; ˆ C A Q ở hai vị trí đối nhau Suy ra, tứ giác A Q B C nội tiếp một đường tròn ⇒ ˆ Q C B = ˆ Q A B (góc nội tiếp cùng chắn cung Q B ) Mà ˆ Q A B = ˆ M N Q = ˆ Q P M ⇒ ˆ Q P M = ˆ Q C B Xét tam giác Q C B vuông tại B ta có: sin ˆ Q C B = Q B Q C (tỉ số lượng giác của góc nhọn) ⇒ Q B = Q C . sin ˆ Q C B = Q C . sin ˆ Q P M (đpcm)
16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành

\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 5 2021
ĐKXĐ: x ≠ y ; y ≥ − 1 Đặt 1 x − y = a ; √ y + 1 = b (ĐK: a ≠ 0 ; b ≥ 0 ) Khi đó hệ phương trình trở thành { 2 a + b = 4 a − 3 b = − 5 ⇔ { 6 a + 3 b = 12 a − 3 b = − 5 ⇔ { 7 a = 7 b = 4 − 2 a ⇔ { a = 1 ( tm ) b = 2 ( tm ) Với ⎧ ⎪ ⎨ ⎪ ⎩ a = 1 b = 2 ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ 1 x − y = 1 √ y + 1 = 2 ⇒ { x − y = 1 y + 1 = 4 ⇔ { x − 3 = 1 y = 3 ⇔ { x = 4 ( tm ) y = 3 ( tm ) Vậy hệ phương trình đã cho có nghiệm { x = 4 y = 3 . 2) Xét phương trình hoành độ giao điểm giữa đường thẳng ( d ) và Parabol ( P ) là: x 2 = 2 ( m − 1 ) x − m 2 + 2 m ⇔ x 2 − 2 ( m − 1 ) x + m 2 − 2 m = 0 (1) a) Với m = 2 phương trình (1) trở thành: x 2 − 2 ( 2 − 1 ) x + 2 2 − 2.2 = 0 ⇔ x 2 − 2 x = 0 ⇔ x ( x − 2 ) = 0 ⇔ [ x = 0 x = 2 - Với x = 0 ⇒ y = 0 2 = 0 ⇒ A ( 0 ; 0 ) - Với x = 2 ⇒ y = 2 2 = 4 ⇒ B ( 2 ; 4 ) Vậy khi m = 2 thì ( P ) cắt ( d ) tại hai điểm phân biệt A ( 0 ; 0 ) ; B ( 2 ; 4 ) . b) Ta có: Δ ′ = b ′ 2 − a c = [ − ( m − 1 ) ] 2 − ( m 2 − 2 m ) = m 2 − 2 m + 1 − m 2 + 2 m = 1 > 0 Do Δ ′ > 0 nên phương trình (1) luôn có hai nghiệm phân biệt x 1 ; x 2 với mọi m . ⇒ Đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ x 1 ; x 2 với mọi m . Khi đó theo hệ thức Viet, ta có: { x 1 + x 2 = 2 m − 2 x 1 x 2 = m 2 − 2 m Để đường thẳng ( d ) cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau ⇔ x 1 + x 2 = 0 ⇔ 2 m − 2 = 0 ⇔ m = 1 ( tm ) Vậy m = 1 thì đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau.
16 tháng 5 2021

Gọi số học sinh dự tuyển của trường A là x (học sinh) (x∈N∗;x<560)

Số học sinh dự tuyển của trường B là y (học sinh) (y∈N∗;y<560)

Vì tổng số học sinh dự thi của hai trường là 750 học sinh nên ta có phương trình: x+y=750     (1)

Số học sinh trúng tuyển của trường A là: 80%.x=45x (học sinh)

Số học sinh trúng tuyển của trường B là: 70%.y=710y (học sinh)

Vì tổng số học sinh trúng tuyển của cả hai trường là 560 học sinh nên ta có phương trình

45x+710y=560

⇔8x+7y=5600    (2)

Từ (1) và (2) ta có hệ phương trình

{x+y=7508x+7y=5600

⇔{7x+7y=52508x+7y=5600

⇔{y=400(tm)x=350(tm)

Vậy số học sinh dự thi của trường A là 350 học sinh

Số học sinh dự thi của trường B là 400 học sinh.

16 tháng 5 2021
Gọi số HS dự tuyển là x HS ( 0
16 tháng 5 2021

a, Ta có : \(x=9\Rightarrow\sqrt{x}=3\)

Thay vào biểu thức A ta được : \(A=\frac{2}{3-2}=2\)

b, Với \(x\ge0;x\ne4\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)+4\sqrt{x}}{x-4}\)

\(=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)( đpcm )

c, Ta có : \(A+B=\frac{3x}{\sqrt{x}-2}\)hay 

\(\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2+\sqrt{x}}{\sqrt{x}-2}=\frac{3x}{\sqrt{x}-2}\)

\(\Rightarrow2+\sqrt{x}=3x\Leftrightarrow3x-2-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\Leftrightarrow x=\frac{4}{9}\left(ktm\right);x=1\)( đk : \(x\ge\frac{2}{3}\))

16 tháng 5 2021

sao cô cho cả đáp án ra lun thế ạ @@

16 tháng 5 2021

à ko em nhầm nhầm em xin lỗi cô 

16 tháng 5 2021

Ta có: \(P=\sqrt{a^2+a}+\sqrt{b^2+b}+\sqrt{c^2+c}\)

\(=\sqrt{a\left(a+1\right)}+\sqrt{b\left(b+1\right)}+\sqrt{c\left(c+1\right)}\)

\(=\frac{1}{2}\left[\sqrt{4a\left(a+1\right)}+\sqrt{4b\left(b+1\right)}+\sqrt{4c\left(c+1\right)}\right]\)

\(\le\frac{1}{2}\left(\frac{4a+a+1}{4}+\frac{4b+b+1}{4}+\frac{4c+c+1}{4}\right)\)

\(=\frac{1}{2}\cdot\frac{5\left(a+b+c\right)+3}{4}=\frac{1}{2}\cdot4=2\)

Dấu "=" xảy ra khi: a = b = c = 1/3

Lại có: \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a\ge a^2\\b\ge b^2\\c\ge c^2\end{cases}}\)

\(\Rightarrow P\ge\sqrt{a^2+a^2}+\sqrt{b^2+b^2}+\sqrt{c^2+c^2}=\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị

5 tháng 6 2021

1, vì ME vuông góc vs AB tại E ⇒AEM=90\(^0\)(1))

   vì MF vuông góc vs AC tại F ⇒AFM=90\(^0\)(2)

lại có:A là điểm chính giữa cảu cug BC ⇒góc AOM =90\(^0\)(3)

từ (1),(2),(3)⇒góc AME=góc AFM=góc AOM(=90\(^0\)) cùng nhìn cạnh AM

⇒năm điểm A,E,F,O,M cùng nằm trên một đường tròn

 

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3