Chứng minh :
\(\sqrt{x^2-2x+5}+\sqrt{x^2-12x+136}\ge13\forall x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-7x+13>-7y+13\Leftrightarrow-7x>-7y\Leftrightarrow x< y\)
b, \(11x-1>11y+1\Leftrightarrow11x+1>11y+1\Leftrightarrow x>y\)
c, \(-19x-37< -19y-37\Leftrightarrow-19x< -19y\Leftrightarrow x>y\)
d, \(-23x-2>-23y+3\Leftrightarrow-23x+3>-23y+3\Leftrightarrow x< y\)
Cô-si đơn giản =)
Có \(\frac{a+b}{2}\ge\sqrt{ab}\)
Nên
\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\left(1\right)\)
\(a+c\ge2\sqrt{ac}\Leftrightarrow\left(a+c\right)^2\ge4ac\left(2\right)\)
\(c+b\ge2\sqrt{bc}\Leftrightarrow\left(b+c\right)^2\ge4bc\left(3\right)\)
Cộng (1), (2), (3) vế theo vế
\(\Rightarrow2a^2+2b^2+2c^2+2ab+2ac+2bc\ge4ab+4ac+4bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Mà Theo đề \(a+b+c+ab+bc+ac=36\) (a=b=c=3) \(\Leftrightarrow ab+bc+ac=27\)
\(\Rightarrow a^2+b^2+c^2\ge27\left(đpcm\right)\)
Áp dụng bđt phụ \(x^2+y^2+z^2+1\ge\frac{2\left(x+y+z+xy+yz+zx\right)}{3}\)nhé =))
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).
ừ để mk giúp