K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1

Áp dụng bđt AM-GM ta có

\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)

\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)

Dấu "=" xảy ra khi x=y

14 tháng 2 2020

Mọi người giúp mình với ạ!

14 tháng 2 2020

Ta có : \(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)

Áp dụng BĐT :

\(xy+yz+zx\le x^2+y^2+z^2\)ta có :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(1\right)\)

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\left(1^2+1^2+1^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(2\right)\)

Cộng theo vế (1) và (2) ta được :

\(6=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)\(+\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(\Leftrightarrow P+\sqrt{3}.\sqrt{P}\ge6\)

\(\Leftrightarrow\left(\sqrt{P}-\sqrt{3}\right)\left(\sqrt{P}+2\sqrt{3}\right)\ge0\)

\(\Leftrightarrow P\ge3\)

Vậy \(P_{min}=3\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

14 tháng 2 2020

Bất đẳng thức cần chứng minh tương đương với : \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)( * )

cần chứng minh BĐT (*)

Thật vậy, Áp dụng BĐT Cô-si dạng Engel, ta có :

\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

Vậy BĐT đã được chứng minh 

Dấu "=" xảy ra \(\Leftrightarrow\)a = b = c = 1