Mọi người làm bài 4 giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề : \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=\sqrt{5^2+2.5\sqrt{2}+2}-\sqrt{4^2+2.4\sqrt{2}+2}\)
\(=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}=\left|5+\sqrt{2}\right|-\left|4+\sqrt{2}\right|\)
\(=5+\sqrt{2}-4-\sqrt{2}=1\)
=1 nha
t.i.c.k mình nha
bạn nào 10sp gúp mình đi
Ta có: A = \(\frac{\sqrt{5}+3}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\sqrt{10}+3\sqrt{2}}{2+\sqrt{6+2\sqrt{5}}}+\frac{3\sqrt{2}-\sqrt{10}}{2-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\sqrt{10}+3\sqrt{2}}{2+\left(1+\sqrt{5}\right)}+\frac{3\sqrt{2}-\sqrt{10}}{2-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{2}+\sqrt{2}\)
\(=2\sqrt{2}\)
f(x1)=3x1f(x1)=3x1
f(x2)=3x2f(x2)=3x2
Theo giả thiết, ta có:
x1<x2⇔3.x1<3.x2x1<x2⇔3.x1<3.x2 ( vì 3>03>0 nên chiều bất đẳng thức không đổi)
⇔f(x1)<f(x2)⇔f(x1)<f(x2) (vì f(x1)=3x1;f(x1)=3x1;f(x2)=3x2)f(x2)=3x2)
Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên RR.
Chú ý:
Ta cũng có thể làm như sau:
Vì x1<x2x1<x2 nên x1−x2<0x1−x2<0
Từ đó: f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0
Hay f(x1)<f(x2)f(x1)<f(x2)
Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên R
Do \(x_1< x_2\Rightarrow3x_1< 3x_2\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Hàm số \(f\)đồng biến trên \(ℝ\)khi :
\(\forall x_1,x_2\inℝ\): \(x_1< x_2\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
=> Hàm số đã cho đồng biến trên \(ℝ\)
+) Thay giá trị của xx vào biểu thức của hàm số y=0,5xy=0,5x, ta được:
f(−2,5)=0,5.(−2,5)=−1,25f(−2,5)=0,5.(−2,5)=−1,25.
f(−2,25)=0,5.(−2,25)=−1,125f(−2,25)=0,5.(−2,25)=−1,125.
f(−1,5)=0,5.(−1,5)=−0,75f(−1,5)=0,5.(−1,5)=−0,75.
f(−1)=0,5.(−1)=−0,5f(−1)=0,5.(−1)=−0,5.
f(0)=0,5.0=0f(0)=0,5.0=0.
f(1)=0,5.1=0,5f(1)=0,5.1=0,5.
f(1,5)=0,5.1,5=0,75f(1,5)=0,5.1,5=0,75.
f(2,2,5)=0,5.2,25=1,125f(2,2,5)=0,5.2,25=1,125.
f(2,5)=0,5.2,5=1,25f(2,5)=0,5.2,5=1,25.
+) Thay giá trị của xx vào biểu thức của hàm số y=0,5x+2y=0,5x+2, ta được:
f(−2,5)=0,5.(−2,5)+2=−1,25+2=0,75f(−2,5)=0,5.(−2,5)+2=−1,25+2=0,75.
f(−2,25)=0,5.(−2,25)+2=−1,125+2=0,875f(−2,25)=0,5.(−2,25)+2=−1,125+2=0,875.
f(−1,5)=0,5.(−1,5)+2=−0,75+2=1,25f(−1,5)=0,5.(−1,5)+2=−0,75+2=1,25.
f(−1)=0,5.(−1)+2=−0,5+2=1,5f(−1)=0,5.(−1)+2=−0,5+2=1,5.
f(0)=0,5.0+2=0+2=2f(0)=0,5.0+2=0+2=2.
f(1)=0,5.1+2=0,5+2=2,5f(1)=0,5.1+2=0,5+2=2,5.
f(1,5)=0,5.1,5+2=0,75+2=2,75f(1,5)=0,5.1,5+2=0,75+2=2,75.
f(2,2,5)=0,5.2,25+2=1,125+2=3,125f(2,2,5)=0,5.2,25+2=1,125+2=3,125.
f(2,5)=0,5.2,5+2=1,25+2=3,25f(2,5)=0,5.2,5+2=1,25+2=3,25.
Vậy ta có bảng sau:
b)
Khi xx lấy cùng một giá trị của xx thì giá trị của hàm số y=0,5x+2y=0,5x+2 lớn hơn giá trị của hàm số y=0,5xy=0,5x là 22 đơn vị.
a)
x | -2,5 | -2,25 | -1,5 | -1 | 0 | 1 | 1,5 | 2,25 | 2,5 |
y=0,5x | -1,25 | -1,125 | -0,75 | -0,5 | 0 | 0,5 | 0,75 | 1,125 | 1,25 |
y=0,5x+2 | 0,75 | 0,875 | 1,25 | 1,5 | 2 | 2,5 | 2,75 | 3,125 | 3,25 |
b) Với các giá trị biến x như nhau thì hàm số y=0,5x+2 luôn lớn hơn hàm số y=0,5x hai đơn vị
a) Xem hình trên và vẽ lại
b)
+) Ta coi mỗi ô vuông trên hình 55 là một hình vuông có cạnh là 1cm1cm.
Từ hình vẽ ta xác định được: A(2;4), B(4;4)A(2;4), B(4;4).
+) Tính độ dài các cạnh của ΔOAB∆OAB:
Dễ thấy AB=4−2=2AB=4−2=2 (cm)(cm).
Gọi CC là điểm biểu diễn số 44 trên trục tung, ta có OC=4cm,AC=2cm;BC=4cmOC=4cm,AC=2cm;BC=4cm
Áp dụng định lý Py-ta-go cho các tam giác vuông OACOAC và OBCOBC, ta có:
OA=√AC2+OC2=√22+42=2√5(cm)OB=√BC2+OC2=√42+42=4√2(cm)OA=AC2+OC2=22+42=25(cm)OB=BC2+OC2=42+42=42(cm)
⇒⇒ Chu vi ΔOABΔOAB là:
CΔOAB=OA+OB+ABCΔOAB=OA+OB+AB
=2+2√5+4√2≈12,13(cm)=2+25+42≈12,13(cm)
+) Tính diện tích ΔOAB∆OAB:
Cách 1:
SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)SΔOAB=SΔOBC−SΔOAC=1/2OC.BC−1/2OC.AC=1/2.42−1/2.4.2=8−4=4(cm2)
Cách 2:
ΔOAB có đường cao ứng với cạnh AB là OC.
⇒SΔOAB=1/2.OC.AB=1/2.4.2=4⇒S∆OAB=1/2.OC.AB=1/2.4.2=4 (cm2)
a,
b,
Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
- Tìm độ dài các cạnh của ΔOAB
Cách vẽ:
- Cho x=1x=1 ta được y=√3.1=√3y=3.1=3. Suy ra A(1;√3)A(1;3)
- Cho x=0x=0 ta được y=√.0=0y=.0=0. Suy ra O(0;0)O(0;0)
Vẽ đường thẳng qua O, A được đồ thị hàm số y=√3x.y=3x.
Các bước vẽ:
- Vẽ một hình vuông có độ dài cạnh là 1 đơn vị, có một đỉnh là O, lấy điểm B(1;1)B(1;1). Khi đó, đường chéo OB có độ dài bằng √12+12=√2.12+12=2.
- Vẽ cung tròn tâm OO, bán kính OBOB , ta xác định được điểm CC trên tia OxOx, và ta có OC=√2.OC=2.
- Vẽ một hình chữ nhật có một đỉnh là O, cạnh CD = 1 và cạnh OC = OB = √22 ta được đường chéo OD=√CD2+OC2=√1+(√2)2=√3.OD=CD2+OC2=1+(2)2=3.
- Vẽ cung tròn tâm OO, bán kính ODOD , ta xác định được điểm EE trên tia OyOy, và ta có OE=√3.OE=3.
- Vẽ hình chữ nhật có một đỉnh là O, có một cạnh bằng 1 đơn vị và một cạnh có độ dài bằng OE=√3OE=3 ta được điểm A(1;√3)A(1;3) .
- Vẽ đường thẳng đi qua gốc tọa độ O và điểm A ta được đồ thị của hàm số y=√3xy=3x
+,vẽ hình vuông có đọ dài cạch lá 1đon vị,một đỉnh lá O,ta được đường chéo OB có độ dài =\(\sqrt{2}\)
+,vẽ hình chữ nhạt có 1 đỉnh là O, cạnh CD=1 và cạnh OC=\(\sqrt{2}\),ta được đường chéo ODcó độ dài=\(\sqrt{3}\).
+.vẽ hình chữ nhật có một đỉnh O,một cạnh =1 và 1 cạch =\(\sqrt{3}\),ta được điểm A (1,\(\sqrt{3}\))
+vẽ dduongf thẳng qua góc tọa độ Ovà điểm A ta dduocjw ddof thị của hàm số y=\(\sqrt{3}\)x
Lời giải:
a) - Với hàm số y = 2x
Bảng giá trị:
x | 0 | 1 |
y = 2x | 0 | 2 |
Đồ thị hàm số y = 2x đi qua gốc tọa độ và điểm A( 1;2)
- Với hàm số y = -2x
Bảng giá trị:
x | 0 | 1 |
y = -2x | 0 | -2 |
Đồ thị hàm số y = -2x đi qua gốc tọa độ và điểm B( 1; - 2)
b) - Ta có O(x1 = 0, y1 = 0) và A(x2 = 1, y2 = 2) thuộc đồ thị hàm số y = 2x, nên với x1 < x2 ta được f(x1) < f(x2).
Vậy hàm số y = 2x đồng biến trên R.
- Lại có O(x1 = 0, y1 = 0) và B(x3 = 1, y3 = -2) thuộc đồ thị hàm số y = -2x, nên với x1 < x3 ta được f(x1) < f(x3).
Vậy hàm số y = -2x nghịch biến trên R.
a) Tự vẽ đths :vvv
ĐTHS y = 2x là đường thẳng đi qua (0;0) và (2;1)
ĐTHS y = -2x là đường thẳng đi qua (0;0) và (-2;1)
b) Xét 2 hàm số:
Vì h/s y = 2x có 2 > 0 => HS đồng biến
Vì h/s y = -2x có -2 < 0 => HS nghịch biến
Giả sử \(a=\sqrt{3}+\sqrt{5}\inℚ\)
\(\Rightarrow a^2=3+2\sqrt{3}.\sqrt{5}+5\inℚ\)
\(\Rightarrow a^2-8=2\sqrt{15}\inℚ\)
Vô lý do \(a^2-8\inℚ;2\sqrt{15}\in I\)
Do đó \(\sqrt{3}+\sqrt{5}\)là số vô tỷ.