2x\(^3\)-x\(^2\)+2x-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e

( x + 2 )3 - x2( x - 6 ) = 4
⇔ x3 + 6x2 + 12x + 8 - x3 + 6x2 - 4 = 0
⇔ 12x2 + 12x + 4 = 0
⇔ 4( 3x2 + 3x + 1 ) = 0
⇔ 3x2 + 3x + 1 = 0
Ta có : 3x2 + 3x + 1 = 3( x2 + x + 1/4 ) + 1/4 = 3( x + 1/2 )2 + 1/4 ≥ 1/4 > 0 ∀ x
=> Phương trình vô nghiệm
( x + 2 )3 - x2 ( x - 6 ) = 4
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 4 = 0
<=> 12x2 + 12x + 4 = 0
<=> 3x2 + 3x + 1 = 0
<=> 3 ( x + 1/2 )2 = - 1/4
<=> ( x + 1/2 )2 = - 1/12 ( vô lý )
=> Vô nghiệm

mình bổ sung phần câu hỏi là ( AB//CD; AB<CD). qua A kẻ đường thẳng song song vs BC cắt CD tại M

9x3 - 9x2y - 4x + 4y
= ( 9x3 - 9x2y ) - ( 4x - 4y )
= 9x2 ( x - y ) - 4 ( x - y )
= ( 9x2 - 4 ) ( x - y )
= [ ( 3x )2 - 22 ] ( x - y )
= ( 3x - 2 ) ( 3x + 2 ) ( x - y )
9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(=2^{64}-1\)
A = 3( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 22 - 1 )( 22 + 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 24 - 1 )( 24 + 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 28 - 1 )( 28 + 1 )( 216 + 1 )( 232 + 1 )
= ( 216 - 1 )( 216 + 1 )( 232 + 1 )
= ( 232 - 1 )( 232 + 1 )
= 264 - 1

A
BCDFEOa, Vì tứ giác ABCD là hình hình hành
⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC{AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD{AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)
học tốt ;-;


a;2R + O2 →→2RO
b;Theo định luật BTKL ta có:
mR+mO=mRO
=>mO=8-4,8=3,2(g)
c;Theo PTHH ta có:
nR=nRO
<=>4,8R=8R+164,8R=8R+16
=>R=24
Vậy R là magie,KHHH là Mg
Dựa theo công thức bài này lm cậu nhé !
2x3 - x2 + 2x - 1 = 0
⇔ x2( 2x - 1 ) + ( 2x - 1 ) = 0
⇔ ( 2x - 1 )( x2 + 1 ) = 0
⇔ 2x - 1 = 0 hoặc x2 + 1 = 0
⇔ x = 1/2 ( x2 + 1 ≥ 1 > 0 ∀ x )