Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Nếu a là số nguyên thì 6/3n+ phải là số nguyên
=>3n+1thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>3n thuộc{0;1;-3;2;-4;5;-7}
=>n thuộc {-1}
Vậy n=-1

Gọi số sản phẩm người đó được giao là x(sản phẩm)
(Điều kiện: \(x\in Z^+\))
Thời gian người đó dự định hoàn thành công việc là \(\dfrac{x}{48}\left(ngày\right)\)
Sau 1 ngày, số sản phẩm còn lại là x-48(sản phẩm)
Thời gian người đó hoàn thành số sản phẩm còn lại là:
\(\dfrac{x-48}{54}\left(ngày\right)\)
Vì người đó dự định hoàn thành đúng kế hoạch nên ta có:
\(\dfrac{x-48}{54}+2=\dfrac{x}{48}\)
=>\(\dfrac{x}{48}-\dfrac{x-48}{54}=2\)
=>\(\dfrac{9x-8\left(x-48\right)}{432}=2\)
=>x+384=2*432=864
=>x=864-384=480(nhận)
vậy: Số sản phẩm người đó được giao là 480 sản phẩm
Gọi số sản phẩm người đó được giao là x(sản phẩm)
(Điều kiện: \(x \in Z^{+}\))
Thời gian người đó dự định hoàn thành công việc là \(\frac{x}{48} \left(\right. n g \overset{ˋ}{a} y \left.\right)\)
Sau 1 ngày, số sản phẩm còn lại là x-48(sản phẩm)
Thời gian người đó hoàn thành số sản phẩm còn lại là:
\(\frac{x - 48}{54} \left(\right. n g \overset{ˋ}{a} y \left.\right)\)
Vì người đó dự định hoàn thành đúng kế hoạch nên ta có:
\(\frac{x - 48}{54} + 2 = \frac{x}{48}\)
=>\(\frac{x}{48} - \frac{x - 48}{54} = 2\)
=>\(\frac{9 x - 8 \left(\right. x - 48 \left.\right)}{432} = 2\)
=>x+384=2*432=864
=>x=864-384=480(nhận)
vậy: Số sản phẩm người đó được giao là 480 sản phẩm

a: M(x)+N(x)
\(=3x^3-7x^2+2x-5+2x^3-7x^2-5x+4\)
\(=5x^3-14x^2-3x-1\)
b: M(x)-N(x)
\(=3x^3-7x^2+2x-5-2x^3+7x^2+5x-4\)
\(=x^3+7x-9\)
c: M(x)+H(x)=0
=>H(x)=-M(x)
=>\(H\left(x\right)=-\left(3x^3-7x^2+2x-5\right)=-3x^3+7x^2-2x+5\)

\(S_{BEC}=2\times S_{ABE}=2\times7,5=15\left(cm^2\right)\)
Ta có: \(S_{BEC}=2\times S_{BEA}\)
=>EC=2EA
Vì AB//CD
nên \(\dfrac{EB}{ED}=\dfrac{EA}{EC}=\dfrac{1}{2}\)
\(\dfrac{EB}{ED}=\dfrac{1}{2}\) nên \(\dfrac{S_{AEB}}{S_{AED}}=\dfrac{1}{2}\)
=>\(S_{AED}=2\times7,5=15\left(cm^2\right)\)
\(\dfrac{EB}{ED}=\dfrac{1}{2}\) nên \(\dfrac{S_{BEC}}{S_{DEC}}=\dfrac{1}{2}\)
=>\(S_{DEC}=2\times S_{BEC}=2\times15=30\left(cm^2\right)\)
\(S_{ABCD}=S_{ABE}+S_{BEC}+S_{DEC}+S_{AED}\)
\(=7,5+15+15+30=67,5\left(cm^2\right)\)

Chiều dài hình chữ nhật là x+3(cm)
Chu vi hình chữ nhật là: \(2\left(x+x+3\right)=2\left(2x+3\right)=4x+6\left(cm\right)\)
Diện tích hình chữ nhật là:
\(x\left(x+3\right)\left(cm^2\right)\)
chiều dài hơn rộng 3 cm=> cd: x+3
chu vi theo biến x: (x+ (x+3)).2
diện tích theo biến x: x.x+3= 2x+3
Một mảnh đất hình chữ nhật có chiều dài 12 m, chiều dài hơn chiều rộng 3 m. Tính chu vi mảnh đất đó.

chiều rộng mảnh đất là:
12-3=9(m)
Chu vi mảnh đất là:
(12+9)x2=42(m)
Đáp số: 42m
Chiều rộng của mảnh đất là:
12-3=9 (m)
Chu vi mảnh đất là:
(12+9)x2 = 42 (m)

a: Xét ΔQEN và ΔQFP có
QE=QF
\(\widehat{EQN}\) chung
QN=QP
Do đó: ΔQEN=ΔQFP
=>EN=FP
b: Ta có: QF+FN=QN
QE+EP=QP
mà QF=QE và QN=QP
nên FN=EP
Xét ΔFNP và ΔEPN có
FN=EP
FP=EN
NP chung
Do đó: ΔFNP=ΔEPN
=>\(\widehat{FPN}=\widehat{ENP}\)
=>\(\widehat{HNP}=\widehat{HPN}\)
=>ΔHNP cân tại H
=>HN=HP
c: Xét ΔQNH và ΔQPH có
QN=QP
NH=PH
QH chung
Do đó: ΔQNH=ΔQPH
=>\(\widehat{QNH}=\widehat{QPH}\)
Ta có: QN=QP
=>Q nằm trên đường trung trực của NP(1)
Ta có: HN=HP
=>H nằm trên đường trung trực của NP(2)
Từ (1),(2) suy ra QH là đường trung trực của NP
=>QH\(\perp\)NP

\(0,6x+\dfrac{3}{2}=-0,3\)
`0,6x+1,5=-0,3`
`0,6x=-0,3-1,5`
`0,6x=-1,8`
`x=-1,8:0,6`
`x=-3`

*Trả lời:
\(\frac14+\frac{x}{12}=\frac{8}{12}\)
\(\frac{x}{12}=\frac{8}{12}-\frac14\)
\(\frac{x}{12}=\frac{8}{12}-\frac{3}{12}\)
\(\frac{x}{12}=\frac{5}{12}\)
=> \(x=5\)
+ Vậy giá trị x thỏa mãn \(\frac14+\frac{x}{12}=\frac{8}{12}\) là \(5\).
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
=>\(\widehat{AKB}=90^0\)
Xét tứ giác NKAH có \(\widehat{NKA}+\widehat{NHA}=90^0+90^0=180^0\)
nên NKAH là tứ giác nội tiếp
=>N,K,A,H cùng thuộc một đường tròn
b: Xét ΔBHN vuông tại H và ΔBKA vuông tại K có
\(\widehat{HBN}\) chung
Do đó: ΔBHN~ΔBKA
=>\(\dfrac{BH}{BK}=\dfrac{BN}{BA}\)
=>\(BH\cdot BA=BN\cdot BK\left(1\right)\)
Xét (O) có
ΔBCA nội tiếp
BA là đường kính
Do đó: ΔBCA vuông tại C
Xét ΔBCA vuông tại C có CH là đường cao
nên \(BH\cdot BA=BC^2\left(2\right)\)
Từ (1),(2) suy ra \(BC^2=BN\cdot BK\)