tìm x
a. (x + 5)2 = (x + 3) (x + 7)
b. x2 + 6x = -9
c. (2x + 1)2 - 4(x + 2)2 = 9
d. (x + 2) (x2 - 2x + 4) =15x(x2 + 2)
e. x3 - 9x = 27 - 27x
f. -x2 - 2x + 15 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x4−2x3−3x2)−(2x3−4x2−6x)−(3x2−6x−9)
=x2(x2−2x−3)−2x(x2−2x−3)−3(x2−2x−3)
=(x2−2x−3)(x2−2x−3)
=(x2−2x−3)2
⇒ A là SCP với mọi x nguyên
chúc học tốt!
a) Đặt: x = a- b; y = b - c ; z = c- a
Ta có: x + y + z = 0
=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)
=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Đặt: \(a=x^2-2x\)
Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)
d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt: \(x^2-8=t\)
Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)
\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)
\(=\left(2x^2+9x-16\right)^2\)
Có: \(x,y\ge1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow xy-x-y+1\ge0\Leftrightarrow xy\ge x+y-1\)
Có: \(0\le a\le1\Rightarrow a\left(a-1\right)\le0\Leftrightarrow a^2\le a\)
Khi đó: \(M=a^2+b^2+c^2+x^2+y^2+x^2\)
\(\le a+b+c+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(\le a+b+c+6\left(x+y+z\right)-2\left[2\left(x+y+z\right)-3\right]\)
\(=6-\left(x+y+z\right)+2\left(x+y+z\right)+6\)
\(=\left(x+y+z\right)+12\le6+12=18\)
Dấu "=" xảy ra khi và chỉ khi a=b=c=0; x=y=1; z=4