K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Vẽ MN là tiếp tuyến của đường tròn (O) (\(N\in\left(O\right)\))

Tứ giác AMNO nội tiếp => \(\widehat{NME}=\widehat{NAO}\)

Mà \(\widehat{NCE}=\widehat{NAB}\)=> Tứ giác MNEC nội tiếp => \(\widehat{DCB}=\widehat{MNE}\)

Mà \(\widehat{MNE}=\widehat{MAE}\left(\Delta MNE=\Delta MAE\right)\)

Mặt khác \(\widehat{MAE}+\widehat{EAO}=\widehat{BAD}+\widehat{OBF}\left(=90^o\right)\). Nên \(\widehat{EAO}=\widehat{OBF}\)

Ta có: \(\Delta OAE=\Delta OBF\left(cgc\right)\)

\(\Rightarrow OE=OF\)

13 tháng 4 2020

GIÚP VS 

13 tháng 4 2020

gợi ý nhé bn:

hoành độ giao điểm của đường thẳng và parabol là nghiệm của pt sau:

2x+1=-x2   (=) x2+2x+1 = 0

cậu tìm đenta nhé và đenta khi cậu tính ra sẽ =0 =) parabol tiếp xúc vs đường thẳng 

còn tọa độ tiếp điểm là giải pt hoành độ và thay x vào một trong hai pt của đường thẳng hay parabol đều ra nghiệm giống nhau

13 tháng 4 2020

1) \(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)

\(\tan^2\alpha+\cot^2\alpha+2\tan\alpha.\cot\alpha-\tan^2\alpha+2\tan\alpha.\cot\alpha-\cot^2\alpha\)

\(4\tan\alpha.\cot\alpha\)

\(4.\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=4\)

2) \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)

\(\frac{4-2-\sqrt{2+\sqrt{2}}}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)

\(\frac{1}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)

Mặt khác: \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow2+\sqrt{2+\sqrt{2}}< 2+\sqrt{4}=4\)

=> \(2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 2+\sqrt{4}=4\)

=> \(\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)

=> \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}>\frac{1}{4}\)