K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

28 tháng 10 2023

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{58}.6\)

\(A=6.\left(1+2^2+...+2^{58}\right)\)

\(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(A⋮3\)

_________________

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{56}.30\)

\(A=30.\left(1+...+2^{56}\right)\)

Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)

Vậy \(A⋮5\)

_________________

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)

\(A=14+...+2^{57}.14\)

\(A=14.\left(1+...+2^{57}\right)\)

Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)

Vậy \(A⋮7\)

\(#WendyDang\)

28 tháng 10 2023

Để giải bài này, trước hết chúng ta cần tìm số nguyên tố a thỏa mãn điều kiện \(a+1\) và \(a+5\) cũng là số nguyên tố.

Ta sẽ kiểm tra các giá trị của a:

- Khi a = 2, ta có \(a+1 = 3\) và \(a+5 = 7\), cả hai đều là số nguyên tố.
- Khi a = 3, ta có \(a+1 = 4\) không phải số nguyên tố.
- Khi a = 5, ta có \(a+1 = 6\) không phải số nguyên tố.
- Khi a = 7, ta có \(a+1 = 8\) không phải số nguyên tố.
- Khi a = 11, ta có \(a+1 = 12\) không phải số nguyên tố.
- Khi a = 13, ta có \(a+1 = 14\) không phải số nguyên tố.
- Khi a = 17, ta có \(a+1 = 18\) không phải số nguyên tố.

Như vậy, ta thấy chỉ có a = 2 thỏa mãn yêu cầu đề bài.

Vậy số người nhiễm covid giảm đi a người so với ngày hôm trước sẽ là 2 người.

AH
Akai Haruma
Giáo viên
27 tháng 10 2023

Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$.

TH1: $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+1)^2+2012=9k^2+6k+2013=3(3k^2+2k+671)\vdots 3$

TH2: $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+2)^2+2012=9k^2+12k+2016=3(3k^2+4k+672)\vdots 3$

Vậy $p^2+2012$ luôn chia hết cho $3$. Mà $p^2+2012>3$ nên là hợp số.

AH
Akai Haruma
Giáo viên
27 tháng 10 2023

Lời giải:
Gọi số cần tìm là $\overline{aabb}$ với $a,b$ là stn có 1 chữ số, $a>0$

Ta có:

$\overline{aabb}=a\times 1000+a\times 100+b\times 10+b$

$=a\times 1100+b\times 11=11\times (a\times 100+b)=11\times \overline{a0b}$

Để $\overline{aabb}$ là scp thì $\overline{a0b}$ có dạng $11k^2$ với $k$ tự nhiên.

Ta có: $\overline{a0b}$ là stn có 3 cs nên:

$100\leq 11k^2\leq 999$

$\Rightarrow 9,09\leq k^2\leq 90,81$

Vì $k$ là stn nên $k\in \left\{4;5;6;7;8;9\right\}$

$\Rightarrow \overline{aabb}=(11k)^2\in \left\{1936; 3025; 4356; 5929; 7744; 9801\right\}$

Đối chiếu với dạng $\overline{aabb}$ suy ra số cần tìm là $7744$

27 tháng 10 2023

giúp mình với mấy bn ơi

TH
Thầy Hùng Olm
Manager VIP
27 tháng 10 2023

số chia cho 2 dư 1 và chia 3 dư 1 nên chia 6 cũng dư 1

Vậy số đó có dạng: n = (2k x 3k) +1 = 6k + 1

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2+4+6+...+2x=870$

$2(1+2+3+...+x)=870$

$1+2+3+...+x=870:2$

$x(x+1):2=870:2$

$\Rightarrow x(x+1)=870=29.30$

Suy ra $x=29$.

20 tháng 12 2023

Tìm số tự nhiên n thỏa mãn: 55 . 6n = 71280.

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Lời giải:
$2+4+6+....+2x=870$

$\Rightarrow 2(1+2+3+...+x)=870$

$\Rightarrow 2.\frac{x(x+1)}{2}=870$
$\Rightarrow x(x+1)=870=29.30$

$\Rightarrow x=29$.

27 tháng 10 2023

\(A=7+7^2+7^3+...+7^8\\=(7+7^2)+(7^3+7^4)+...+(7^7+7^8)\\=7\cdot(1+7)+7^3\cdot(1+7)+...+7^7\cdot(1+7)\\=7\cdot8+7^3\cdot8+...+7^7\cdot8\\=8\cdot(7+7^3+...+7^7)\)

Vì \(8\cdot(7+7^3+...+7^7)\vdots8\)

nên \(A\vdots8\)

27 tháng 10 2023

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^7+7^8\right)\)

\(A=56+7^2.\left(7+7^2\right)+...+7^6.\left(7+7^2\right)\)

\(A=56+7^2.56+...+7^6.56\)

\(A=56.\left(1+7^2+...+7^6\right)\)

Vì \(56⋮8\) nên \(56.\left(1+7^2+...+7^6\right)⋮8\)

Vậy \(A⋮8\)

\(#WendyDang\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$A=(7+7^2)+(7^3+7^4)+....+(7^7+7^8)$

$=7(1+7)+7^3(1+7)+....+7^7(1+7)$

$=(1+7)(7+7^3+....+7^7)=8(7+7^3+....+7^7)\vdots 8$

Ta có đpcm.

27 tháng 10 2023

exgxx-bvnm