tìm x: x^4 - 3x^2 + 1/x^4 - 3/x^2 = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) kẻ OM \(\perp\)CD
OM là 1 phần đường kính vuông góc dây CD nên đi qua trung điểm CD
\(\Rightarrow\)MC = MD
dễ thấy AHKB là hình thang vuông có OM là đường trung bình nên MH = MK
\(\Rightarrow\)CH = DK
b) gọi C',M',D' lần lượt là hình chiếu của C,M,D xuống AB
Ta có : \(\frac{CC'+DD'}{2}=MM'\)
Qua M kẻ đường thẳng // AB cắt AH,BK tại S,T
\(\Delta SHM=\Delta TKM\left(g.c.g\right)\)
\(\Rightarrow S_{SHM}=S_{TKM}\)
\(\Rightarrow S_{AHKB}=S_{ASTB}\)
Mặt khác : ASTB là hình bình hành
\(\Rightarrow S_{ASTB}=MM'.AB\)
Mà \(S_{ACB}+S_{ADB}=\frac{CC'.AB}{2}+\frac{DD'.AB}{2}=AB\left(\frac{CC'+DD'}{2}\right)=AB.MM'\)
\(\Rightarrow S_{AHKB}=S_{ACB}+S_{ADB}\)
c) Ta có : \(S_{AHKB}\)max \(\Leftrightarrow MM'\)max
Xét \(\Delta MM'O\)có : \(MO\ge MM'\)
Mà : \(MO=\sqrt{15^2-9^2}=12\)
\(\Rightarrow MM'\)max = 12
Vậy SAHKB max = AB .MM' = 360
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(E=2+\frac{1}{x^2+2x+4}=2+\frac{1}{\left(x+1\right)^2+3}\) đạt GTLN
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+3}\)đạt GTLN
\(\Leftrightarrow\left(x+1\right)^2+3\)đạt GTNN \(\Leftrightarrow x=-1\)
Vậy GTLN của E là \(\frac{7}{3}\)khi x = -1
\(F=\frac{6x-8}{x^2+1}=\frac{\left(x^2+1\right)-\left(x^2-6x+9\right)}{x^2+1}=1-\frac{\left(x-3\right)^2}{x^2+1}\)
F có GTLN \(\Leftrightarrow\frac{\left(x-3\right)^2}{x^2+1}\)có GTNN khi x = 3
Vậy GTLN của F là 1 khi x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: P = -28/5 < 0 => Phương trình luôn có 2 nghiệm phân biệt.
Áp dụng định lí viet ta có:
\(x_1x_2=-\frac{28}{3}\left(1\right);x_1+x_2=-\frac{m}{5}\left(2\right)\)
Theo đề bài: \(5x_1+2x_2=1\)
<=> \(5\left(x_1+x_2\right)-3x_2=1\)
<=> \(x_2=\frac{-m-1}{3}\)
=> \(x_1+\frac{-m-1}{3}=-\frac{m}{5}\)
<=> \(x_1=\frac{2m}{15}+\frac{1}{3}=\frac{2m+5}{15}\)
Thay vào (1) ta có: \(\frac{-m-1}{3}.\frac{2m+5}{15}=-\frac{28}{5}\)
<=> \(\left(m+1\right)\left(2m+5\right)=252\)
<=> \(\orbr{\begin{cases}m=-13\\m=\frac{19}{2}\end{cases}}\)
Vậy:...
Xét \(\Delta=m^2-45\cdot\left(-28\right)=m^2+560>0\forall m\)
Khi đó \(x_1=\frac{-m+\sqrt{m^2+560}}{10}\)
\(x_2=\frac{-m-\sqrt{m^2+560}}{10}\)
Khi đó \(5x_1+2x_2=\frac{5\left(-m+\sqrt{m^2+560}\right)+2\left(-m-\sqrt{m^2+560}\right)}{10}=\frac{-7m+3\sqrt{m^2+560}}{10}=1\)
\(\Rightarrow3\sqrt{m^2+560}=10+7m\)
\(\Rightarrow9\left(m^2+560\right)=49m^2+140m+100\)
\(\Rightarrow40m^2+140m-4940=0\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{19}{2}\\m=-13\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta=\left(2m-1\right)^2+4m=4m^2+1>0,\forall m\)
=> Phương trình có 2 nghiệm phân biệt
Áp dụng định lí viet ta có: \(x_1+x_2=-\left(2m-1\right);x_1.x_2=-m\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(2m-1\right)^2+3m=4m^2-m+1\)
\(=\left(2m\right)^2-2.2m.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+1\)
\(=\left(2m-\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Dấu "=" xảy ra <=> m = 1/8
Vậy min A = 15/16 khi m = 1/8
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)