Giải phương trình : (√(x+4) - 2)(√(4-x) + 2) = -2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)
\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)
Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)
\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)
\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)
\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:
(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn
Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)
\(ĐKXĐ:-4\le x\le4\)
Ta có :
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
\(\Leftrightarrow\sqrt{x+4}.\sqrt{4-x}+2\sqrt{x+4}-2\sqrt{4-x}-4+2x=0\)
\(\Leftrightarrow\sqrt{16-x^2}+2\left(\sqrt{x+4}-\sqrt{4-x}\right)+2x-4=0\)
\(\Leftrightarrow\left(\sqrt{16-x^2}-4\right)+2.\left(\sqrt{x+4}-\sqrt{4-x}\right)+2x=0\)
\(\Leftrightarrow\frac{16-x^2-16}{\sqrt{16-x^2}+4}+2.\frac{x+4-4+x}{\sqrt{x+4}+\sqrt{4-x}}+2x=0\)
\(\Leftrightarrow\frac{-x^2}{\sqrt{16-x^2}+4}+\frac{4x}{\sqrt{x+4}+\sqrt{4-x}}+2x=0\)
\(\Leftrightarrow x\left[\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+2-\frac{x}{\sqrt{16-x^2}+4}\right]=0\)
\(\Leftrightarrow x\left[\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+\frac{2\sqrt{16-x^2}+8-x}{\sqrt{16-x^2}+4}\right]=0\)
\(-4\le x\le4\Rightarrow\frac{4}{\sqrt{x+4}+\sqrt{4-x}}+\frac{2\sqrt{16-x^2}+8-x}{\sqrt{16-x^2}+4}>0\)
=> x =0