Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1; (d) // (d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=2\\-7\ne0\end{matrix}\right.\)
Kết luận : (d) // (d') khi m = 2
2; (d)//(d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m+2=1\\4\ne-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=1-2\\4\ne-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}m=-1\\4\ne-3\end{matrix}\right.\)
Kết luận (d)//(d') khi m = -1
Bài 2:
a; (d) cắt (d') ⇔ a ≠ a'
⇔ m ≠ 2m + 1
2m - m ≠ -1
m ≠ -1
Vậy (d) cắt (d') khi m ≠ -1
b; (d)//(d') ⇔ \(\left\{{}\begin{matrix}m=2m+1\\3\ne-5\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2m-m=-1\\3\ne-5\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}m=-1\\3\ne-5\end{matrix}\right.\)
Vậy (d)//(d') khi m = -1
1.
Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m=2\\ -7\neq 0\end{matrix}\right.\Leftrightarrow m=2\)
2.
Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m+2=1\\ 4\neq -3\end{matrix}\right.\Leftrightarrow m=-1\)
Lời giải:
Gọi PTĐT cần tìm là $y=ax+b$
Đường thẳng đi qua gốc tọa độ (0;0) nên:
$0=a.0+b\Rightarrow b=0$
Đường thẳng đi qua $A(2;1)$ nên:
$1=2a+b=2a+0=2a\Rightarrow a=\frac{1}{2}$
Vậy hệ số góc là $a=\frac{1}{2}$
Số pi (ký hiệu: π), còn gọi là hằng số Archimedes, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường tròn đó. Hằng số này có giá trị xấp xỉ bằng 3,142 hoặc 22/7. Nó được biểu diễn bằng chữ cái Hy Lạp π từ giữa thế kỷ XVIII.