K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\hept{\begin{cases}x^2+y^2+x+y=4\left(1\right)\\x\left(x+y+1\right)+y\left(y+1\right)=2\left(2\right)\end{cases}}\)

\(\hept{\begin{cases}x^2+y^2+x+y=4\left(1\right)\\x^2+xy+x+y^2+y=2\left(2\right)\end{cases}}\)

Loại phương trình 2 ta đc : \(xy=0\Rightarrow x=y=0\)

Chắc đó ạ ! 

14 tháng 5 2020

loại pt 2 ta được ???? bạn giải thích hộ ?

13 tháng 5 2020

ĐKXĐ xy-6 >=0 (*)

Nếu hệ đã cho có nghiệm (x;) do \(\sqrt{xy-6}\ge0\)

nên từ \(\sqrt{xy-6}=12-y^2\Rightarrow12-y^2\ge0\left(1\right)\)

Mặt khác phương trình \(xy+3=3+x^2\Leftrightarrow x^2-yx+3=0\)

Phương trình có nghiệm x theo y

\(\Rightarrow\Delta=y^2-12\ge0\left(2\right)\)

Từ (1) và (2) => \(y^2-12=0\Rightarrow y=\pm2\sqrt{3}\)

Với \(y=\pm2\sqrt{3}\)thay vào hệ đã cho tìm được \(x=\pm\sqrt{3}\)(TMĐK (*))

Vậy........

17 tháng 5 2020

PT: \(\sqrt{x+3}x^4=2x^4-2008x+2008\)

DK xác định : \(x+3\ge0\Leftrightarrow x\ge-3\)(**)

PT đã cho tương đương:

\(x^4\left(\sqrt{x+3}-2\right)+2008x=2008\)(***)

Nếu :\(x>1\) thì  \(x+3>4\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x>2008\)

Nếu \(-3\le x\le1\)thì\(0\le x+3< 4\Rightarrow\sqrt{x+3}-2< 0\)và \(x^4\ge0\)

\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)\le0\) Mặt khác : \(2008x< 2008\)

\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x< 2008\)

\(x=1\) thỏa mãn (***)

Vậy (***) có nghiệm duy nhất x= 1

KL: Nghiệm của pt đã cho là : x  = 1

18 tháng 5 2020

sai rồi bạn ơi

12 tháng 5 2020

Vì x;y nguyên dương và (x;y)=(1;1) không thỏa mãn phương trình nên x2+y2+1 >3; xy+x+y>3

=> xy+x+y là ước nguyên dương lớn hơn 3 cả 30 gồm 5;6

Nếu xy+x+y=5

=> (x+1)(y+1)=6 ta được các trường hợp

\(\hept{\begin{cases}x+1=2\\y+1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}\left(tmđk\right)}}\)

\(\hept{\begin{cases}x+1=3\\y+1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}\left(tmđk\right)}}\)

Nếu xy+x+y=6 

<=> (x+1)(y+1)=7 (ktm)

Vậy cặp số (x;y)=(1;2);(2;1)

12 tháng 5 2020

ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)

\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)

\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)

12 tháng 5 2020

Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)

Hay là:

\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)

Việc còn lại là của mọi người.