Cho tam giác ABC ba góc nhọn AB < AC, ngoại tiếp đường tròn (O). Gọi
D;E;F lần lượt là các tiếp điểm của đường tròn (O)với cạnh BC;AB;AC.Tia DO cắt
đường tròn (O) tại I (I khác D), qua I vẽ tiếp tuyến với đường tròn cắt AB;AC thứ
tự ở M;N.
a/ Biết AE = 3cm,BC = 6cm,Tính độ dài đoạn MN.
b/ Gọi giao điểm của AO và DE là K. Chứng minh OKD OCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\sqrt{2x^2+4x+8}=t>0;\)
=> \(2x^2+4x+8=t^2\)
=> \(x^2+2x=\frac{t^2-8}{2}\) thế vào phương trình ta có:
\(\frac{t^2-8}{2}=t+20\)
<=> \(t^2-2t-48=0\)
<=> t = -6 ( loại ) hoặc t = 8
Với t = 8 ta có phương trình: \(2x^2+4x+8=64\)
<=> \(x=-1-\sqrt{29}\) hoặc \(x=-1+\sqrt{29}\)
Số gam muối có trong 500g dung dịch nước muối loại 5% là:
500 x 5% = 25g
Số gam dung dịch loại 2% muối pha được từ 25g muối là:
25:2% = 1250 g
Số gam nước cần phải pha thêm là:
1250 -500 = 750 g
Số gam muối cần phải thêm là:
750 x 2% = 15 (g)
\(a^2+b^2=\left(\frac{\sqrt{2}-1}{2}\right)^2+\left(\frac{\sqrt{2}+1}{2}\right)^2\)
\(=\frac{3-2\sqrt{2}+3+2\sqrt{2}}{4}\)
\(=\frac{6}{4}\)
\(=\frac{3}{2}\)
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1
\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)
\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)
\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)
Vậy GTNN của P=3