Một hình trụ có thể tích bằng 35xdm3.Hãy so sánh thể tích hình trụ này với thể tích hình cầu đường kính 6dm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)

Gọi độ dài 1 cạnh góc vuông là x (cm, x>7)
độ dài 1 cạnh góc vuông còn lạ là x-7 (cm)
Theo đè là ta có
\(x^2+\left(x-7\right)^2=13^2\)(ĐL Pytago)
\(\Leftrightarrow x^2+x^2-14x+49=169\)
\(\Leftrightarrow2x^2-14x-120=0\)
\(\Leftrightarrow x^2-7x-60=0\)
\(\Leftrightarrow x^2-12x+5x-60=0\)
\(\Leftrightarrow x.\left(x-12\right)+5.\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-12\right).\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-12=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=12\left(TM\right)\\x=-5\left(L\right)\end{cases}}\)
Vậy độ dài 1 cạnh góc vuông là 12cm
dộ dài 1 cạnh góc vuông còn lại là \(12-7=5\left(cm\right)\)
Nhớ k cho mình nhé

PT đã cho tương đương với : \(2\sqrt{2}x^3+3.2x^2-4=0\)
đặt \(y=x\sqrt{2}\), PT trở thành : \(y^3+3y^2-4=0\Leftrightarrow\left(y-1\right)\left(y+2\right)^2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{2}}{2}\\x=-\sqrt{2}\end{cases}}\)
Ta có \(V_{cầu}=\frac{4}{3}.\pi.R^3=\frac{4}{3}.\pi.\left(\frac{6}{2}\right)^3\)
\(=\frac{4}{3}.\pi.3^3\)
\(=4.\pi.9=36\pi\left(dm^3\right)\approx113dm^3\)
Ta thấy \(113dm^3>35dm^3\) nên thể tích hình cầu lớn hơn thể tích hình trụ