Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a3 + b 3+ 3ab(a2 + b2) + 6a2b2(a + b).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)
\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)
\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)
\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)
\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)
Vậy...
Ta có: \(36=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\)(1)
\(\left(x+y\right)^2\ge4xy\)(2)
Nhân theo vế (1) và (2), ta được: \(36\left(x+y\right)^2\ge16xyz\left(x+y\right)\Rightarrow\frac{x+y}{xyz}\ge\frac{4}{9}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=z;x=y\\x,y>0;x+y+z=6\end{cases}}\Leftrightarrow x=y=\frac{3}{2};z=3\)
\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : x ≠ -3 , x ≠ 2
\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) Để M = 1/3
=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )
=> 3( x - 4 ) = x - 2
=> 3x - 12 - x + 2 = 0
=> 2x - 10 = 0
=> 2x = 10
=> x = 5 ( tm )
Vậy x = 5 thì M = 1/3
đk: \(x\ne2,x\ne-3\)
a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)
CM : \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)
CM: \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+x^3z^3+y^3z^3\right)}{3xyz}=\frac{3x^2y^2z^2}{xyz}=xyz\)
( x - 2 )( x2 + 2x + 4 ) - ( x3 + 1 )
= x3 - 8 - x3 - 1 = -9
A B C D F E M N Q P O I
Bài làm
a) Xét tam giác ABC có:
E là trung điểm AC
F là trung điểm BC
=> EF là đường trung bình
Vậy EF là đường trung bình của tam giác ABC (đpcm)
b) Vì EF là đường trung bình của tam giác ABC
=> EF // AB => EF // AD
=> EF = 1/2AB.
Mà AD = 1/2AB (Do D là trung điểm AB)
=> EF = AD
Xét tứ giác ADEF có:
EF // AD (chứng minh trên)
EF = AD (chứng minh trên)
=> Tứ giác ADEF là hình bình hành.
Nối AF
Xét tam giác EAF có:
N là trung điểm AE
P là trung điểm EF
=> NP là đường trung bình của tam giác EAF
=> NP = 1/2AF (1)
=> NP // AF (2)
Xét tam giác DAF có:
M là trung điểm AD
Q là trung điểm DF
=> MQ là đường trung bình của tam giác DAF
=> MQ = 1/2AF (3)
=> MQ // AF (4)
Từ (1) và (3) => NP = MQ
Từ (2) và (4) => MQ // NP
Xét tứ giác MNPQ có:
NP = MQ (chứng minh trên)
NP // MQ (chứng minh trên)
=> MNPQ là hình bình hành.
c) Nếu tam giác ABC vuông tại A
=> \(\widehat{BAC}=90^0\)
Mà tứ giác DAEF là hình bình hành (theo câu b)
=> DAEF là hình chữ nhật.
Vì DAEF là hình chữ nhật
=> AF vuông góc DE (tính chất hai đường chéo)
Gọi giao điểm của AF và DE là O
=> AF vuông góc với DE tại O
Gọi giao điểm của DE với NP là I
Xét tam giác AEO vuông tại O có:
N là trung điểm AE
NI // AO (Do NP // AF chứng minh ở trên)
=> NI là đường trung bình
=> NI // AO
Mà \(\widehat{AOE}\)và \(\widehat{NIO}\)trong cùng phía bù nhau
=> \(\widehat{NIO}=90^0\)
Xét tam giác AED có:
M là trung điểm AD
N là trung điểm AE
=> MN là đường trung bình
=> MN // DE
Mà \(\widehat{MNI}+\widehat{NIO}=180^0\)(trong cùng phía)
hay \(\widehat{MNP}=180^0-90^0\)
=> \(\widehat{MNP}=90^0\)
Mà tứ giác MNPQ là hình bình hành
=> MNPQ là hình chữ nhật.
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
Vậy M=1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1