K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Chắc đề thiếu. A; B là giao điểm của (P) và (d) 

Hoành độ giao điểm là nghiệm của phương trình: 

\(x^2=mx+1\)

<=> \(x^2-mx-1=0\)(1) 

(P) giao (d) tại hai điểm phân biệt

<=> Phương trình (1) có 2 nghiệm phân biệt

<=> \(\Delta=m^2+4>0\) luôn đúng 

Vậy (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)

hay (P) và (d) luôn cắt nhau tại hai điểm \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)

Gọi M là giao điểm của (d) và Oy 

=> \(M\left(0;1\right)\)

Ta có: \(S_{OAB}=S_{OAM}+S_{OBM}=3\)

<=> \(\frac{\left|x_1\right|.1}{2}+\frac{\left|x_2\right|.1}{2}=3\)

<=> \(\left|x_1\right|+\left|x_2\right|=6\)

<=> \(x_1^2+x_2^2+2\left|x_1x_2\right|=6\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=6\)

<=> \(m^2=2\)

<=> \(\orbr{\begin{cases}m=\sqrt{2}\\m=-\sqrt{2}\end{cases}}\)

15 tháng 6 2020

Chọn câu A