Bài 3. Trên mặt phẳng Oxy, cho đường thẳng (d): y = ax+b với a, b là hằng số. Tìm a, b biết:
a) d đi qua điểm M(1;−2) và song song với đường thẳng d_{1}:y=2x-1
b) d đi qua gốc tọa độ và qua giao điểm của hai đường thẳng d_{2}:y=4x-3 và d_{3}:y=-x+3.
c) d cắt trục hoành tại điểm có hoành độ bằng 5 và đi qua điểm M(2;3).
d) d cắt đường thẳng dạ : y=x+1 tại điểm có tung độ bằng 2 và vuông góc với đường thẳng d_{2}:y=3-x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg vuông OAC và tg vuông OMC có
OA=OM=R
OC chung
=> tg OAC = tg OMC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)
Tương tự ta cũng có
tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)
\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)
b/
AB+BD nhỏ nhất khi \(M\equiv B\)
Gọi thời gian mà mỗi người hoàn thành công việc của người thứ nhất và người thứ hai nếu làm riêng lần lượt là a,b (\(a,b\in\mathbb{Q}\)) với đơn vị là giờ.
Ta có:
\(\left\{{}\begin{matrix}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot10=\dfrac{1}{10}\\\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot20+\dfrac{1}{b}\cdot20=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{10}\cdot2+\dfrac{1}{b}\cdot20=\dfrac{1}{4}\)
\(\dfrac{1}{b}\cdot20=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{b}\cdot20=\dfrac{1}{20}\)
\(\dfrac{1}{b}=\dfrac{1}{400}\)
\(\Rightarrow b=400\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{100}-\dfrac{1}{400}=\dfrac{3}{400}\)
\(\Rightarrow a=\dfrac{400}{3}\)
Vậy người thứ nhất làm riêng thì hoàn thành trong \(\dfrac{400}{3}\) giờ, người thứ hai làm riêng hoàn thành trong \(400\) giờ.
Đề bài thiếu "Tìm x để C=A(B-2) có giá trị nguyên
\(C=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\left(\sqrt{x}+1-2\right)=\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}-2}=\)
\(=\dfrac{x-4+\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{x+\sqrt{x}-2}{\sqrt{x}-2}=\)
\(=\dfrac{\left(x-2\sqrt{x}+4\right)+\left(3\sqrt{x}-6\right)}{\sqrt{x}-2}=\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2+3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\)
\(=\sqrt{x}-2+3=\sqrt{x}+1\)
Để C nguyên x phải là số chính phương
Ta có \(\dfrac{a^3+b^3}{2ab}\ge\dfrac{ab\left(a+b\right)}{2ab}=\dfrac{a+b}{2}\)
(áp dụng BĐT quen thuộc \(a^3+b^3\ge ab\left(a+b\right)\))
Lập 2 BĐT tương tự rồi cộng theo vế:
\(VT\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có đpcm.
Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)
Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\), \(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)
\(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)
\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)
Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)
Ảnh minh họa:
Với AC là đoạn máy bay cần bay và BC là độ mà máy bay đạt được
Ta có: \(sinA=\dfrac{BC}{AC}\Rightarrow AC=\dfrac{2000}{sin25^o}\approx4732,4\left(m\right)\)
Vậy để đạt độ cao 2000m thì máy bay cần bay khoảng 4732,4m
a) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow\left|2x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\left(x\ge\dfrac{1}{2}\right)\\2x-1=-5\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
b) \(3\sqrt{x-2}-\sqrt{4x-8}+4\sqrt{\dfrac{9x-18}{4}}=14\) \(\left(x\ge2\right)\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{4\left(x-2\right)}+4\cdot\dfrac{\sqrt{9x-18}}{2}=14\)
\(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+2\sqrt{9\left(x-2\right)}=14\)
\(\Leftrightarrow\sqrt{x-2}+6\sqrt{x-2}=14\)
\(\Leftrightarrow7\sqrt{x-2}=14\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=6\left(tm\right)\)
c) \(\sqrt[3]{4x-1}=3\)
\(\Leftrightarrow4x-1=3^3\)
\(\Leftrightarrow4x-1=27\)
\(\Leftrightarrow4x=27+1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(a.\sqrt{4x^2-4x+1}=5\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\left(ĐK:\left(2x-1\right)^2\ge0\forall x\right)\\ \Leftrightarrow\left|2x-1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=5+1\\2x=-5+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ Vậy.S=\left\{3;-2\right\}\\ b.3\sqrt{x-2}-\sqrt{4x-8}+4\sqrt{\dfrac{9x-18}{4}}=14\\ \Leftrightarrow3\sqrt{x-2}-\sqrt{4\left(x-2\right)}+\dfrac{4\sqrt{9\left(x-2\right)}}{\sqrt{4}}=14\\ \Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+6\sqrt{x-2}=14\\ \Leftrightarrow7\sqrt{x-2}=14\left(ĐK:x\ge2\right)\\ \Leftrightarrow\sqrt{x-2}=2\\ \Leftrightarrow x-2=4\\ \Leftrightarrow x=4+2\\ \Leftrightarrow x=6\left(tm\right)\\ Vậy,S=\left\{6\right\}\)
\(c.\sqrt[3]{4x-1}=3\\ \Leftrightarrow4x-1=27\\ \Leftrightarrow4x=27+1\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\)
TỰ ĐI MÀ LÀM