K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

mk chưa học đến lớp 9 

xin lỗi bn nha

4 tháng 7 2020

Bài làm:

\(\frac{1}{x-1}.\sqrt{x^2-2x+1}\)

\(=\frac{1}{x-1}.\sqrt{\left(x-1\right)^2}\)

\(=\frac{1}{x-1}.\left|x-1\right|\)

\(=\frac{1}{x-1}.-\left(x-1\right)\)(Vì x < 1 ) 

\(=-1\)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

4 tháng 7 2020

Để biểu thức có nghĩa thì +) trong căn luôn luôn >= 0

+) mẫu khác 0

Áp dụng vào bài ta có đk của x : \(\hept{\begin{cases}x\ge0\\x\ne\pm1\end{cases}}\)

Vậy để biểu thức trên có nghĩa thì \(\hept{\begin{cases}x\ge0\\x\ne\pm1\end{cases}}\)

4 tháng 7 2020

\(\left(y+2\right)x^2+1=y^2\Leftrightarrow\left(y+2\right)x^2=y^2-1\)

Xét y=-2 \(\Rightarrow0=3\)(loại)

Xét \(y\ne-2\)\(\Rightarrow\left(y+2\right)x^2=y^2-1\Leftrightarrow x^2=\frac{y^2-1}{y+2}\),\(\frac{y^2-1}{y+2}=\frac{\left(y+1\right)\left(y-1\right)}{y+2}=\left(1-\frac{1}{y+2}\right)\left(y-1\right)\)

Để x nguyên thì \(1⋮y+2\Rightarrow\left(y+2\right)\inƯ\left(1\right)\left\{-1;1\right\}\)

Với \(y+2=-1\Leftrightarrow y=-3\Rightarrow x=-8\)

Với \(y+2=1\Leftrightarrow y=-1\Rightarrow x=0\)

Tới đây kết luận là xong

4 tháng 7 2020

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình \(x^2-2mx+m^2-1=0\)

\(\Delta^`=1>0\)

\(\Rightarrow x_1=m+1,x_2=m-1\)

\(\Rightarrow y_1=m^2+2m+1,y_2=m^2-2m+1\)

\(\Rightarrow y_1-y_2>4\Leftrightarrow4m>4\Leftrightarrow m>1\)

Cofn trường hợp còn lại là m<1 cách giải tương tự