\(^{x^2+6=4\sqrt{\left(x+1\right)\left(x^2-3x+3\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài này nhớ hôm trước làm rồi mà không nhớ ở câu nào nữa == , ngại tìm lại nên làm luôn :>
M I x C A O B D y
a) Ta có : OC , OD là các tia phân giác của 2 góc kề bù nên \(\widehat{COD}=90^o\) . Gọi I là trung điểm của CD tì :
IC = ID = IO
nên I là tâm và IO là bán kính của đường tròn có đường kính CD
b)
Chu vi hình thang ABDC bằng :
AB + AC + BD + CD
Ta dễ dàng chứng inh được :
AC + BD = CM + MD = CD
nên chu vi ABDC bằng AB + 2CD
Ta có AB không đổi nên chu vi ABDC nhỏ nhất và bằng 3AB .
c)
Đặt AC = x ; BD = y . Chu vi ABCD bằng :
AB + 2CD = 4 + 2( x + y )
Do chu vi ABDC bằng 14 nên :
4 + 2( x + y ) = 14
hay
x + y = 5 (1)
Ta lại có :
xy = MC . MD
= OM2 ( hệ thức lượng tam giác vuông COD )
nên xy = 22 = 4 (2)
Từ (1) , (2) suy ra :
\(x+\frac{4}{x}=5\Leftrightarrow x^2+4=5x\Leftrightarrow x^2-5x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\Leftrightarrow x=1;4\)
Vậy , nếu điểm C ( thuộc tia Ax ) cách điểm A là 1 cm hoặc 4 cm thì chu vi hình thang ABDC vẫn bằng 14cm

\(\left|Ya-Yb\right|\)
\(=\left|-\left(m-1\right)-\left(-4\right)\right|\)
\(=\left|-m+1+4\right|\)
\(=\left|-m+5\right|=\left|5-m\right|\)
Vậy \(\left|Ya-Yb\right|=\left|5-m\right|\)
`|Ya - Yb| `
`= |(-(m-1) - (-4) |`
`= | -m +1 + 4|`
`=|-m+5|`
`= |5-m|`

Bài làm
a) \(Q=\left(\frac{1}{x-1}-\frac{1}{x}\right):\left(\frac{x+1}{x-2}-\frac{x+2}{x-1}\right)\)
\(Q=\left(\frac{x}{x\left(x-1\right)}-\frac{x-1}{x\left(x-1\right)}\right):\left(\frac{x^2-1}{\left(x-2\right)\left(x-1\right)}-\frac{x^2-4}{\left(x-2\right)\left(x-1\right)}\right)\)
\(Q=\left(\frac{x-x+1}{x\left(x-1\right)}\right):\left(\frac{x^2-1-x^2+4}{\left(x-2\right)\left(x-1\right)}\right)\)
\(Q=\frac{1}{x\left(x-1\right)}:\frac{3}{\left(x-2\right)\left(x-1\right)}\)
\(Q=\frac{1}{x\left(x-1\right)}.\frac{\left(x-2\right)\left(x-1\right)}{3}\)
\(Q=\frac{x-2}{3x}\)
ĐKXĐ: \(\frac{x-2}{3}\ge0\)
Vì \(\frac{x-2}{3}\ge0\). Mà 3 > 0
=> x - 2 > 0
<=> x > 2
Vậy x > 2 thì biểu thức Q có nghĩa.
b) \(C=\left(\frac{x+2}{x^2-x}+\frac{x-2}{x^2+x}\right).\frac{x^2-1}{x^2+2}\)
\(C=\left(\frac{x+2}{x\left(x-1\right)}+\frac{x-2}{x\left(x+1\right)}\right).\frac{x^2-1}{x^2+2}\)
\(C=\left(\frac{\left(x+2\right)\left(x+1\right)}{x\left(x^2-1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{x\left(x^2-1\right)}\right).\frac{x^2-1}{x^2+2}\)
\(C=\left(\frac{x^2+2x+x+2+x^2-x-2x+2}{x\left(x^2-1\right)}\right).\frac{x^2-1}{x^2+2}\)
\(C=\frac{2x^2+4}{x\left(x^2-1\right)}.\frac{x^2-1}{x^2+2}\)
\(C=\frac{2\left(x^2+2\right)}{x\left(x^2-1\right)}.\frac{x^2-1}{x^2+2}\)
\(C=\frac{2}{x}\)
ĐKXĐ: \(\frac{2}{x}\ge0\)
Vì \(\frac{2}{x}\ge0\),
Mà 2 > 0
=> x > 0
Vậy x > 0 thì biểu thức C có nghĩa.

A B D C I
Đặt BC = a , AC = b , AB = c . Ta có :
\(BD=\frac{a+c-d}{2}\)
\(DC=\frac{a+b-c}{2}\)
Do đó , ta giả sử \(\left(b\ge c\right)\)
\(BD.DC=\frac{a+c-b}{2}.\frac{a+b-c}{2}\)
\(=\frac{a-\left(b-c\right)}{2}.\frac{a+\left(b-c\right)}{2}\)
\(=\frac{a^2-\left(b-c\right)^2}{4}\)
\(=\frac{a^2-b^2+2bc-c^2}{4}\)
\(=\frac{a^2-\left(b^2+c^2\right)+2bc}{4}\)
Do \(a^2=b^2+c^2\)nên \(BD.DC=\frac{2bc}{3}=\frac{bc}{2}=S_{ABC}\)

Trả lời:
\(\sqrt{x}+\sqrt{3x-2}=x^2+1\)\(\left(ĐK:x\ge\frac{2}{3}\right)\)
\(\Leftrightarrow x^2+1-\sqrt{x}-\sqrt{3x-2}=0\)
\(\Leftrightarrow2x^2+2-2\sqrt{x}-2\sqrt{3x-2}=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(x-2\sqrt{x}+1\right)+\left(3x-2-2\sqrt{3x-2}+1\right)=0\)
\(\Leftrightarrow2.\left(x-2x+1\right)+\left(\sqrt{x}-1\right)^2+\left(\sqrt{3x-2}-1\right)=0\)
\(\Leftrightarrow2.\left(x-1\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{3x-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x}-1=0\\\sqrt{3x-2}-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=1\\\sqrt{3x-2}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=1\left(TM\right)\\3x-2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=1\left(TM\right)\\x=1\left(TM\right)\end{cases}}\)
Vậy nghiệm của phương trình là \(x=1\)
\(\sqrt{x}+\sqrt{3x-2}=x^2+1\)
\(4x+2\sqrt{x\left(3x-2\right)}-2=x^4+2x^2+1\)
\(2\sqrt{x\left(3x-2\right)}=x^4+2x^2-4x+3\)
\(4x\left(3x-2\right)=\left(x^4+2x^2-4x+3\right)^2\)
\(12x^2-8x=\left(x^4+2x^2-4x+3\right)^2\)
\(12x^2-8x-\left(x^4+2x^2-4x+3\right)^2=0\)
Đến đây chỗ \(\left(x^4+2x^2-4x+3\right)^2\)lớn quá mình chưa tìm đc cách giải
\(x^2+6=4\sqrt{\left(x+1\right)\left(x^2-3x+3\right)}\)
\(x^4+12x^2+36=16\left(x+1\right)\left(x^2-3x+3\right)\)
\(x^4+12x^2+36=16x^3-32x^2+48\)
\(x^4+12x^2+36-16x^3+32x^2-48=0\)
\(x^4-16x^3+44x^2-12=0\)
ĐK \(x\ge-1\)
Tiếp đoạn bạn Alan walker
\(x^4-16x^3+44x^2-12=0\)
<=> \(\left(x^2-12x-6\right)\left(x^2-4x+2\right)=0\)
<=> \(\orbr{\begin{cases}x^2-12x-6=0\\x^2-4x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\pm\sqrt{42}\\x=2\pm\sqrt{2}\end{cases}}\)(tm ĐKXĐ)