Cho a,b là các số thực dương thoả mãn : a(2a-1) + b(2b-1) = 2ab.
Tìm giá trị nhỏ nhất của biểu thức F= \(\frac{a^3+2020}{b}+\frac{b^3+2020}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{AC}{AB}=\frac{5}{12}\)
\(\Leftrightarrow\frac{AC^2}{AB^2}=\frac{25}{144}\)
\(\Leftrightarrow\frac{AC^2+AB^2}{AB^2}=\frac{25+144}{144}\)
\(\Leftrightarrow\frac{BC^2}{AB^2}=\frac{169}{144}\)
\(\Leftrightarrow\frac{BC}{AB}=\frac{13}{12}\)\(\Leftrightarrow\frac{26}{AB}=\frac{13}{12}\Leftrightarrow AB=\frac{26\times12}{13}=24\left(cm\right)\)
\(\Rightarrow\frac{AC}{24}=\frac{5}{12}\Leftrightarrow AC=\frac{24\times5}{12}=10\left(cm\right)\)
Xét \(\Delta ABC\), \(\widehat{A}=90^0,AH\perp BC\)
\(AB^2=BH\times BC\)( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow24^2=BH\times26\)
\(\Leftrightarrow576=BH\times26\)
\(\Leftrightarrow BH=\frac{288}{13}\left(cm\right)\)
\(AC^2=CH\times CB\)( hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow10^2=CH\times26\)
\(\Leftrightarrow100=CH\times26\)
\(\Leftrightarrow CH=\frac{50}{13}\left(cm\right)\)
Đáp số \(AB=24cm\), \(AC=10cm\)
\(BH=\frac{288}{13}cm\), \(CH=\frac{50}{13}cm\)
a)
Cho x, y, z thỏa mãn x^2 + y^2 + z^2 ≤ 3. Tìm GTNN của P = 1/(1 + xy) + 1/(1 + yz) + 1/(1 + xz)
Engel
P≥(1+1+1)^2/[3+(xy+yz+zx)]
BDT co ban
x^2 + y^2 + z^2 ≥xy+yz+zx
=>xy+yz+zx≤3
<=>P≥3^2/(3+3)=3/2
gtnn P=3/2 "= khi x=y=z=1
Với DK:a\(\ge\)b,b\(\ge\)0,a\(\ne\)b
\(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)=0\)
\(\hept{\begin{cases}3\left(x-1\right)+2\left(x-2y\right)=10\\4\left(x-2\right)-\left(x-2y\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-3+2x-4y-10=0\\4x-8-x+2y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x-4y-13=0\left(1\right)\\3x+2y-10=0\left(2\right)\end{cases}}\)
Nhân 2 vào từng vế của ( 2 )
\(\Rightarrow\hept{\begin{cases}5x-4y-13=0\\6x+4y-20=0\end{cases}}\)
Lấy ( 1 ) cộng ( 2 ) theo vế
\(\Rightarrow11x-33=0\Leftrightarrow11x=33\Leftrightarrow x=3\)
Thế x = 3 vào ( 1 )
=> \(5\cdot3-4y-13=0\Rightarrow4y=2\Leftrightarrow y=\frac{2}{4}=\frac{1}{2}\)
Vậy ( x ; y ) = ( 3 ; 1/2 )
\(\hept{\begin{cases}3\left(x-1\right)+2\left(x-2y\right)=10\\4\left(x-2\right)-\left(x-2y\right)=2\end{cases}\Leftrightarrow\hept{\begin{cases}3x-3+2x-4y=10\\4x-8-x+2y=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5x-13-4y=0\\3x-10+2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}5x-13-4y=0\\6x-20+4y=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}11x-23=0\\3x-10+2y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{23}{11}\left(1\right)\\3x-10+2y=0\left(2\right)\end{cases}}}\)
Thay x vào pt 2 ta đc
\(3.\frac{23}{11}-10+2y=0\Leftrightarrow\frac{69}{11}-10+2y=0\)
\(\Leftrightarrow y=\frac{41}{22}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{23}{11};\frac{41}{22}\right\}\)
Câu cuối đề vào 10 Hà Nội phải không :))
\(ĐKXĐ:x\ge\frac{2}{3}\)
\(\sqrt{x}+\sqrt{3x-2}=x^2-1\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{3x-2}-1\right)=x^2-1\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+1}}+\frac{3x-3}{\sqrt{3x-2}+1}-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x}+1}+\frac{3}{\sqrt{3x-2}+1}-x-1\right)=0\)
Hê hê trong ngoặc còn x=1 nữa mà ngại phá vl :))
uwu mới tìm ra cách mới khá Oke các bạn xem thử nhé :)
\(\sqrt{x}+\sqrt{3x-2}=x^2+1\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{3x-2}=2x^2+2\)
\(\Leftrightarrow2x^2-4x+2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{3x-2}-1\right)^2=0\)
\(\Leftrightarrow2\left(x-1\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{3x-2}-1\right)^2=0\)
=> x=1
Vì A khác rỗng
=> Tồn tại số a \(\in\)A => 1 - a \(\in\)A và 1/a \(\in\)A
=> \(\frac{1}{1-a}\in A;1-\frac{1}{a}=\frac{a-1}{a}\in A\)
=> \(1-\frac{1}{1-a}\in A;\frac{a}{a-1}=1-\frac{1}{1-a}\in A\)
Mà A chỉ có chứa tối đa 5 phần tử
=> \(a=1-\frac{1}{1-a}\Leftrightarrow a=\frac{a}{a-1}\Leftrightarrow\orbr{\begin{cases}a=2\\a=0\left(loai\right)\end{cases}}\Leftrightarrow a=2\)
Vậy tập A = { 2; -1; 1/2}
\(\sqrt{2016-x}+\sqrt{x-2014}=x^2-4030x+4060227\) (*)
Điều kiện : \(2014\le x\le2016\)
Áp dụng tính chất : \(\left(a+b\right)^2\)\(\le\)\(\left(a^2+b^2\right)\)với \(\forall a,b\)
Ta có:
\(\sqrt{x-2016}+\sqrt{x-2014}^2\) \(\le\)\(2\left(2016-x+x-2014\right)\)\(=4\)
\(\Rightarrow\sqrt{\left(2016-x\right)+}\sqrt{\left(x-2014\right)\le2}\)\(\left(1\right)\)
Mặt khác: \(x^2-4030x+4060227=\left(x-2015\right)^2+2\left(2\right)\)
Từ (1) và (2) ta có:
\(\Rightarrow\)(*) \(\Leftrightarrow\sqrt{2016-x}+\sqrt{x-2014}=\left(x-2015\right)^2+2=2\)
\(\Leftrightarrow\left(x-2015\right)^2=0\)
\(\Rightarrow x=2015\) ( Thỏa mãn điều kiện)
Vậy phương trình có 1 nghiệm duy nhất là x=2015
Mẫu không âm+ quy đồng
\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)(1)
<=> \(2+3\left(a+b\right)+\left(a+b\right)^2\ge2+2a+2b+2ab\)
<=> \(a^2+b^2+a+b\ge0\) luôn đúng vì a; b không âm
Do đó (1) đúng
Dấu "=" xảy ra <=> a = b = 0
cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O
bạn Phạm Thị Thúy Phượng gửi nhầm bài rồi