Cho a,b>1 , \(a+b\le3\).Tính GTNN:\(D=\frac{1}{a^2+b^2-2a-2b+2}+\frac{1}{ab-a-b+1}+4\left(ab-a-b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bạn không nên đưa những câu hỏi linh tinh,vớ vẩn lên diễn đàn nha

Bài làm:
Ta có: \(C=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\ge\frac{\left(1+2+3\right)^2}{x+y+z}\ge\frac{6^2}{1}=36\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=\frac{1}{13}\\y=\frac{4}{13}\\z=\frac{9}{13}\end{cases}}\)

\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)
Áp dụng Cauchy ta được :
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)
\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)

a1000+\(\frac{1}{a}\)+\(\frac{1}{a}\)+....+\(\frac{1}{a}\) (có 1000 số hạng ) =1001
a900+\(\frac{1}{a}\)+...+\(\frac{1}{a}\)(900 số hạng )>=901
a90+\(\frac{1}{a}\)+..\(\frac{1}{a}\) >=91
a5+\(\frac{1}{a}\)+..+\(\frac{1}{a}\) >=6
\(\Rightarrow\)A>=1001+901+91+6=1999.
" = " khi a1000=\(\frac{1}{a}\); a900=\(\frac{1}{a}\) ;a90=\(\frac{1}{a}\) và a5=\(\frac{1}{a}\)
#Nhi Tiểu Cừu

\(P=\frac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=-\frac{2}{\sqrt{6}}-\frac{1}{\sqrt{6}}=\frac{-3}{\sqrt{6}}=-\frac{\sqrt{6}}{2}\)
Trả lời:
\(P=\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(P=\frac{2\sqrt{8}-2\sqrt{3}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(P=\frac{2.\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}.\left(\sqrt{3}-\sqrt{8}\right)}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{6}.\left(\sqrt{5}+\sqrt{27}\right)}\)
\(P=\frac{-2.\left(\sqrt{3}-\sqrt{8}\right)}{\sqrt{6}.\left(\sqrt{3}-\sqrt{8}\right)}-\frac{1}{\sqrt{6}}\)
\(P=\frac{-2}{\sqrt{6}}-\frac{1}{\sqrt{6}}\)
\(P=\frac{-3}{\sqrt{6}}\)
\(P=\frac{-\sqrt{6}}{2}\)
Học tốt
\(D=\frac{1}{a^2+b^2-2a-2b+2}+\frac{1}{ab-a-b+1}+4\left(ab-a-b\right)\)
\(=\frac{1}{a^2+b^2-2a-2b+2}+\frac{1}{2ab-2a-2b+2}+\frac{1}{2\left(ab-a-b+1\right)}+4\left(ab-a-b\right)\)
\(\ge\frac{4}{a^2+b^2-4a-4b+2ab+4}+\frac{1}{2\left(ab-a-b+1\right)}+8\left(ab-a-b+1\right)-4\left(ab-a-b+1\right)-4\)
\(\ge\frac{4}{\left(a+b-2\right)^2}+2\sqrt{\frac{1}{2\left(ab-a-b+1\right)}.8\left(ab-a-b+1\right)}-4\left(ab-a-b+1\right)-4\)
\(\ge4+4-4\left(ab-a-b+1\right)-4\)
= 4 ( a + b ) - 4ab
\(\ge\)4 ( a + b ) - (a + b )2 - 4 + 4
= - ( a + b - 2 )^2 + 4
\(\ge\)3
Dấu "=" <=> a = b = 3/2
Đưa D về dạng:
D = \(\frac{1}{\left(a-1\right)^2+\left(b-1\right)^2}+\frac{1}{\left(a-1\right)\left(b-1\right)}+4\left(a-1\right)\left(b-1\right)-4\)
\(\left(a-1\right)+\left(b-1\right)=a+b-2\le1\)
Đặt: a - 1 = x ; b - 1 = y => x + y \(\le\)1
=> \(D=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy-4\)
Tìm min D. Làm như này chắc nhanh hơn. Bạn thử xem nhé!