Cho đường thẳng y= (2m +1)x -1.Tìm m để d cắt hai trục tọa độ tạp thành tam giác có diện tích bằng 1/2.Mình biết m bằng mấy rồi nhưng không biết cách trình bày
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABC có AM là phân giác ngoài tại A
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)
Xét ΔCMA có BN//MA
nên \(\dfrac{BC}{BM}=\dfrac{CN}{NA}\)
=>\(\dfrac{BC+BM}{BM}=\dfrac{CN+NA}{NA}\)
=>\(\dfrac{MC}{BM}=\dfrac{CA}{NA}\)
=>\(\dfrac{MB}{MC}=\dfrac{NA}{CA}\)
mà \(\dfrac{MB}{MC}=\dfrac{BA}{AC}\)
nên \(\dfrac{NA}{CA}=\dfrac{BA}{AC}\)
=>NA=BA
* Vì bạn đang cần gấp cho câu b nên mình chỉ giải câu b thôi nhé ^^
Theo giả thiết, ta có AM // BN. Do đó, theo định lý về đường song song, ta có:
$\frac{AB}{AC} = \frac{AN}{NC} \tag{1}$
Tuy nhiên, do AM là tia phân giác góc ngoài tại A của tam giác ABC, ta có:
$\frac{AB}{AC} = \frac{BM}{MC} \tag{2}$
Từ (1) và (2), ta có:
$\frac{AN}{NC} = \frac{BM}{MC}$
Do đó, AN = BM.
Nhưng BM = BA (do M là điểm nằm trên tia đối của BA), nên AN = BA.
Vậy, AB = AN.
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC
=>MN\(\perp\)AB
Xét tứ giác AMNC có NM//AC
nên AMNC là hình thang
Hình thang AMNC có \(\widehat{CAM}=90^0\)
nên AMNC là hình thang vuông
b: Gọi H,K lần lượt là trung điểm của MA,NC
Xét ΔAMN có
H,E lần lượt là trung điểm của AM,AN
=>HE là đường trung bình của ΔAMN
=>HE//MN và \(HE=\dfrac{MN}{2}\)
Xét ΔCMN có
F,K lần lượt là trung điểm của CM,CN
=>FK là đường trung bình của ΔCMN
=>FK//MN và \(FK=\dfrac{MN}{2}\)
Xét ΔNACcó
E,K lần lượt là trung điểm của NA,NC
=>EK là đường trung bình của ΔNAC
=>EK//AC
mà AC//MN
nên EK//MN
Ta có: HE//MN
EK//MN
HE,EK có điểm chung là E
Do đó: H,E,K thẳng hàng
Ta có: EK//MN
FK//MN
EK,FK có điểm chung là K
Do đó: E,F,K thẳng hàng
=>H,E,F,K thẳng hàng
Xét hình thang MNCA có
H,K lần lượt là trung điểm của AM,CN
=>HK là đường trung bình của hình thang MNCA
=>\(HK=\dfrac{MN+CA}{2}\)
\(HE+EF+FK=\dfrac{MN+CA}{2}\)
=>\(\dfrac{MN}{2}+\dfrac{MN}{2}+EF=\dfrac{MN+CA}{2}\)
=>\(EF=\dfrac{AC-MN}{2}\)
a) MN là đường trung bình của tam giác ABC vì M, N lần lượt là trung điểm của BA và BC.
--> MN song song với AC vì MN là đường trung bình của tam giác ABC.
=> Do đó, ACNM là hình thang vuông vì MN song song với AC và AM vuông góc với AC.
b) Ta có ME = MA/2 = AB/2 và NF = NC/2 = BC/2.
=> Do đó, EF = MN - (ME + NF) = MN - (AB + BC)/2 = (AC - MN) / 2.
\(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}\right)-\dfrac{2-x}{2+x}:\dfrac{-\left(x-1\right)}{2x-x^2}\)
\(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)+\dfrac{x-2}{x+2}:\dfrac{-\left(x-1\right)}{-x\left(x-2\right)}\)
\(=\dfrac{-\left(x+2\right)^2-4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\cdot\dfrac{x\left(x-2\right)}{x-1}\)
\(=\dfrac{-5x^2-4x-4}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{\left(-5x^2-4x-4\right)\left(x-1\right)+x\left(x-2\right)^3}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{-5x^3+5x^2-4x^2+4x-4x+4+x\left(x^3-6x^2+12x-8\right)}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{-5x^3+x^2+4+x^4-6x^3+12x^2-8x}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{x^4-11x^3+13x^2-8x+4}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
a: Xét ΔCAB có AM là đường phân giác ngoài tại A
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)
=>\(MB\cdot AC=AC\cdot AB\)
c: CB+BM=CM
=>CM=15+7=22(cm)
Xét ΔCMA có BN//MA
nên \(\dfrac{BN}{MA}=\dfrac{CB}{CM}\)
=>\(\dfrac{15}{22}=\dfrac{5}{AM}\)
=>\(AM=22\cdot\dfrac{5}{15}=\dfrac{22}{3}\left(cm\right)\)
Lời giải:
$\frac{x^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}=\frac{2z}{y+z}$
$\Leftrightarrow \frac{x^4+2x^2z^2+y^2z^2}{(x^2+y^2)(x^2+z^2)}=\frac{2z}{y+z}$
$\Leftrightarrow (x^4+2x^2z^2+y^2z^2)(y+z)=2z(x^4+x^2z^2+x^2y^2+y^2z^2)$
$\Leftrightarrow x^4y-x^4z+2x^2yz^2-2x^2y^2z+y^3z^2-y^2z^3=0$
$\Leftrightarrow x^4(y-z)-2x^2yz(y-z)+y^2z^2(y-z)=0$
$\Leftrightarrow (y-z)(x^4-2x^2yz+y^2z^2)=0$
$\Leftrightarrow (y-z)(x^2-yz)^2=0$
$\Leftrightarrow y-z=0$ hoặc $x^2-yz=0$
$\Leftrightarrow y=z$ hoặc $x^2=yz$
Bài 12:
a: ĐKXĐ: \(x\notin\left\{3;2\right\}\)
b: Đặt \(A=\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{x-3}\)
Thay x=13 vào A, ta được:
\(A=\dfrac{13+2}{13-3}=\dfrac{15}{10}=\dfrac{3}{2}\)
Bài 4:
1:
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}\)
\(=\dfrac{-10}{4}=-\dfrac{5}{2}\)
b: ĐKXĐ: \(x\notin\left\{-5;6\right\}\)
\(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
2:
a: ĐKXĐ: x<>2
\(\dfrac{5x-10}{x^2+7}:\left(2x-4\right)\)
\(=\dfrac{5\left(x-2\right)}{x^2+7}:2\left(x-2\right)\)
\(=\dfrac{5\left(x-2\right)}{2\left(x-2\right)\left(x^2+7\right)}=\dfrac{5}{2\left(x^2+7\right)}\)
b: ĐKXĐ: \(x\notin\left\{-5;\dfrac{7}{3}\right\}\)
\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
\(=\left(x^2-25\right)\cdot\dfrac{3x-7}{2x+10}\)
\(=\left(x-5\right)\left(x+5\right)\cdot\dfrac{3x-7}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}\cdot\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)
\(=\dfrac{x}{3\left(x-1\right)}\)
A) Số chấm chia hết cho 2 có thể là: 2; 4; 6 nên có 3 khả năng xảy ra
Gọi A là biến cố "mặt xuất hiện của xúc xắc có số chấm chia hết cho 2"
⇒ P(A) = 3/6 = 1/2
Các số chia hết cho 2 ở trong mặt xúc xắc là :2,4,6
Số % để gieo trúng các mặt đó là:
100 : 6 x 3 = 50%
Vậy 50 % là trúng các mặt đó.
a: ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=20^2\)
=>BC=20(cm)
Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{12}=\dfrac{CM}{20}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=16cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{16}{8}=2\)
=>\(AM=2\cdot3=6\left(cm\right);CM=5\cdot2=10\left(cm\right)\)
Xét ΔABC có MN//BC
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)
=>\(\dfrac{MN}{20}=\dfrac{6}{16}=\dfrac{3}{8}\)
=>\(MN=20\cdot\dfrac{3}{8}=\dfrac{60}{8}=7,5\left(cm\right)\)
b: Bạn ghi lại đề nha bạn
Thay x=-5 và y=0 vào y=ax+b, ta được:
\(a\cdot\left(-5\right)+b=0\)
=>-5a+b=0(1)
Thay x=1 và y=3 vào y=ax+b, ta được:
\(a\cdot1+b=3\)
=>a+b=3(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-5a+b=0\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6a=-3\\a+b=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=3-\dfrac{1}{2}=\dfrac{5}{2}\end{matrix}\right.\)
Gọi A(x;y) và B(x;y) lần lượt là giao điểm của (d) với trục Ox,Oy
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+1\right)x-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{1}{2m+1}\end{matrix}\right.\)
=>\(OA=\sqrt{\left(\dfrac{1}{2m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{1}{\left|2m+1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(2m+1\right)\cdot0-1=-1\end{matrix}\right.\)
=>B(0;-1)
\(OB=\sqrt{\left(0-0\right)^2+\left(-1-0\right)^2}=1\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot1\cdot\dfrac{1}{\left|2m+1\right|}=\dfrac{1}{2\left|2m+1\right|}\)
Để \(S_{OAB}=\dfrac{1}{2}\) thì \(\dfrac{1}{2\left|2m+1\right|}=\dfrac{1}{2}\)
=>|2m+1|=1
=>\(\left[{}\begin{matrix}2m+1=1\\2m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)