Cho đa thức H(x)=ax2+bx+c
Biết 5a-3b+2c=0,hãy chứng tỏ rằng H(-1).H(-2)<;=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Xét Tam giác ABC : Góc B lớn hơn góc C → AC > AB
Trên tia AC lấy điểm F sao cho AF =AB
Xét tam giác ADE và tam giác ADB có : AD chung
AF =AB ( cách vẽ )
Góc DAE = Góc DAB ( gt)
→ Tam giác ADE = Tam giác ADB (c.g.c) (1)
Từ (1) → Góc ADB = Góc ADE ( 2 góc tương ứng )
Lại có : Góc ADB là góc ngoài tại D của tam giác ADC → ADB > C
→ ADE > C
Mà : Góc DEC là góc ngoài tại E của tam giác ADE → DEC > ADE
→ DEC > C
Xét tam giác DEC có : DEC > C → DC > DE
Mặt khác từ (1) → DE =DB ( 2 cạnh tương ứng )
→ DC > DB
→ ĐPCM
1)Vì x2 \(\ge\) 0 với mọi x E R
=>x2+1 \(\ge\) 1 > 0 với mọi x E R
=>đa thức vô nghiệm
2)Vì 2x6 \(\ge\) 0 với mọi x E R
4x4 \(\ge\) 0 với mọi x E R;x2 \(\ge\) 0 với mọi x E R
=>2x6+4x4+x2+2 \(\ge\) 2 > 0 với mọi x
=>đa thức vô nghiệm
A=x2+5x+8
A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)
\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)
\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)
\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
=>GTNN của A là 7/4
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
\(H\left(-1\right)=a-b+c\) (1)
\(H\left(-2\right)=4a-2b+c\) (2)
Lấy (1) + (2) vế theo vế được
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
Suy ra \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)
Hoặc \(H\left(-1\right)\)và\(H\left(-2\right)\)có 1 số âm và một số dương
\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\)