cho B=1/2+(1/2)2+(1/2)3+(1/2)4+...+(1/2)2014+(1/2)2015
Chung minh rang :B<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)
xét x^2+2=0
The solution to this equation could not be determined.
\(\frac{x+3-2x}{3}=\frac{2x-2}{4}\)
\(\Leftrightarrow\frac{3-x}{3}=\frac{x-1}{2}\)(áp dụng tc tỉ lệ thức (do tui làm hơi tắt))
\(\Leftrightarrow2\left(3-x\right)=3\left(x-1\right)\)
\(\Leftrightarrow6-2x=3x-3\)
\(\Leftrightarrow2x-3x=-9\)
\(\Leftrightarrow-5x=-9\)
\(\Leftrightarrow x=\frac{9}{5}\)
P(1)=m^2+2m+1
Q(-1)=m^2-2m-1+1=m^2-2m
P(1)=Q(-1)
=> m^2+2m+1=m^2-2m
=> m=-0,25
Nếu ab là ab thì mk giải thế này:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\)
\(=\frac{\left(10a+a\right)+\left(10b+b\right)+ \left(10c+c\right)}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{11}{2}\)
do đó: \(\frac{10a+b}{a+b}=\frac{11}{2}\Rightarrow\left(10a+b\right).2=11.\left(a+b\right)\Rightarrow20a+2b=11a+11b\)
\(\Rightarrow20a-11a=11b-2b\Rightarrow9a=9b\Rightarrow a=b\)
Tương tự với b=c;c=a
=>\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0^3+0^3+0^3=0\)
Giả sử x = -2 là nghiệm của đa thức trên thi ta có:
\(-2.\left(-2\right)^3-3.\left(-2\right)^2+4.\left(-2\right)+3=0\)
Vậy đa thức trên có nghiệm là -2
Giả sử x=-2 là nghiệm của đa thức trên. Ta có:
\(-2\times\left(-2\right)^3-3\times\left(-2\right)^2+4\times\left(-2\right)+3=0\)
Vậy đa thức có nghiệm là -2
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
Ta có: \(2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\)
=>\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)\)
=>\(B=1-\frac{1}{2^{2015}}<1\left(đpcm\right)\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)
\(B=2B-B=1-\frac{1}{2005}<1\)