K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2016

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.....+\left(\frac{1}{2}\right)^{2014}+\left(\frac{1}{2}\right)^{2015}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

Ta có: \(2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\)

=>\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2013}}+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)\)

=>\(B=1-\frac{1}{2^{2015}}<1\left(đpcm\right)\)

16 tháng 5 2016

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2003}}+\frac{1}{2^{2004}}\)

\(B=2B-B=1-\frac{1}{2005}<1\)

16 tháng 5 2016

x^2+3x=0

<=> x(x+3)=0

=>x=0

    x+3=0 =>x=-3

16 tháng 5 2016

\(x^2+3x=0 \)

 x(x+3)=0

x=0 hoặc x+3=0

x=0 hoặc x=-3

15 tháng 5 2016

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

15 tháng 5 2016

x^2=-2

Ma x^2 luôn dương

Vậy đa thức vô nghiệm

15 tháng 5 2016

xét x^2+2=0

The solution to this equation could not be determined. 

15 tháng 5 2016

\(\frac{x+3-2x}{3}=\frac{2x-2}{4}\)

\(\Leftrightarrow\frac{3-x}{3}=\frac{x-1}{2}\)(áp dụng tc tỉ lệ thức (do tui làm hơi tắt))

\(\Leftrightarrow2\left(3-x\right)=3\left(x-1\right)\)

\(\Leftrightarrow6-2x=3x-3\)

\(\Leftrightarrow2x-3x=-9\)

\(\Leftrightarrow-5x=-9\)

\(\Leftrightarrow x=\frac{9}{5}\)

15 tháng 5 2016

P(1)=m^2+2m+1

Q(-1)=m^2-2m-1+1=m^2-2m

P(1)=Q(-1)

=> m^2+2m+1=m^2-2m

=> m=-0,25

15 tháng 5 2016

ab có gạch đầu ko bn?

15 tháng 5 2016

Nếu ab là ab thì mk giải thế này:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\)

\(=\frac{\left(10a+a\right)+\left(10b+b\right)+ \left(10c+c\right)}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{11}{2}\)

do đó: \(\frac{10a+b}{a+b}=\frac{11}{2}\Rightarrow\left(10a+b\right).2=11.\left(a+b\right)\Rightarrow20a+2b=11a+11b\)

\(\Rightarrow20a-11a=11b-2b\Rightarrow9a=9b\Rightarrow a=b\)

Tương tự với b=c;c=a

=>\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0^3+0^3+0^3=0\)

15 tháng 5 2016

Giả sử x = -2 là nghiệm của đa thức trên thi ta có:

\(-2.\left(-2\right)^3-3.\left(-2\right)^2+4.\left(-2\right)+3=0\)

Vậy đa thức trên có nghiệm là -2

15 tháng 5 2016

Giả sử x=-2 là nghiệm của đa thức trên. Ta có:

\(-2\times\left(-2\right)^3-3\times\left(-2\right)^2+4\times\left(-2\right)+3=0\)

Vậy đa thức có nghiệm là -2