Cho đường tròn tâm \(O\) nội tiếp tam giác \(ABC\). Gọi \(E,M,F\) là các tiếp điểm \(\left(M\in AB,E\in BC,F\in AC\right)\). Đặt \(AB=c;BC=a;CA=b\). Lập công thức tính diện tích \(\Delta EMF\) theo \(a,b,c\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Đây là dạng toán thi HSG casio nên cách giải sẽ được áp dụng trên máy tính nhé"
Ta có quy tắc sau:
\(S_1=49=\left(2\cdot1^2+5\right)^2\)
\(S_2=S_1+169=S_1+\left(2\cdot2^2+5\right)^2\)
\(S_3=S_1+S_2+529=S_1+S_2+\left(2\cdot3^2+5\right)^2\)
\(S_4=S_1+S_2+S_3+1369=S_1+S_2+S_3+\left(2\cdot4^2+5\right)^2\)
Ta lập trình nhau sau:
\(X=X+1:A=\left(2\cdot X^2+5\right)^2:X=X+1:B=A+\left(2\cdot X^2+5\right)^2:X=X+1:A=B+\left(2\cdot X^2+5\right)^2\)
Tiếp theo ta ấn phím "CALC" nhập vào `X=0`
Rồi ấn dấu "=" liên tục cho đến khi `X=15` ta sẽ được \(S_{15}\) và khi `X=25` thì ta được \(S_{25}\)
Vì đa thức \(x^2-1\) có bậc là 2
nên phần dư của phép chia \(P\left(x\right)\) cho \(x^2-1\) có bậc nhỏ hơn 2
Thực hiện phép chia đa thức \(P\left(x\right)\) cho \(\left(x^2-1\right)\), ta được:
\(P\left(x\right)=\left(x^2-1\right)\cdot Q\left(x\right)+ax+b\)
\(=\left(x-1\right)\left(x+1\right)\cdot Q\left(x\right)+ax+b\)
+, Với \(x=1\) thì:
\(P\left(1\right)=\left(1-1\right)\left(1+1\right)\cdot Q\left(1\right)+a\cdot1+b\)
\(\Rightarrow a+b=P\left(1\right)=1^{2010}+1^{2009}+11=13\) (1)
+, Với \(x=-1\) thì:
\(P\left(-1\right)=\left(-1-1\right)\left(-1+1\right)\cdot Q\left(-1\right)+a\cdot\left(-1\right)+b\)
\(\Rightarrow-a+b=P\left(-1\right)=\left(-1\right)^{2010}+\left(-1\right)^{2009}+11=11\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=13\\-a+b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=2\\b=a+11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=12\end{matrix}\right.\)
Vậy phần dư của phép chia \(P\left(x\right)\) cho \(\left(x^2-1\right)\) là \(x+12\)
\(a_0=1\)
\(H=-2a_1+2^2a_2-2^3a_3+2^4a_4-2^5a_5+...+2^{28}a_{28}-2^{29}a_{29}+2^{30}a_{30}\)
\(H+1=1+\left(-2\right)a_1+\left(-2\right)^2a_2+\left(-2\right)^3a_3+\left(-2\right)^4a_4+\left(-2\right)^5a_5+...+\left(-2\right)^{28}a_{28}+\left(-2\right)^{29}a_{29}+\left(-2\right)^{30}a_{30}\)
\(\Leftrightarrow H+1=T\left(-2\right)=5^{15}\)
\(\Rightarrow H=\left[{}\begin{matrix}30517578124\\5^{15}-1\end{matrix}\right.\)
\(\left(2x+3\sqrt{x}-3\right)^2=116^2\)
\(\Leftrightarrow2x+3\sqrt{x}-3=116\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)
\(\Rightarrow\)\(2t^2+3t-3=116\)
\(2t^2+3t-119=0\)
\(\Delta=3^2-4.2.\left(-119\right)\)\(=961\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{961}=31\)\(>0\)
\(\Rightarrow\)hpt có 2 nghiệm phân biệt
\(\Rightarrow t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+31}{2.2}=7\left(TM\right)\)
\(\Rightarrow t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-31}{2.2}=\dfrac{-17}{2}\left(L\right)\)
Với \(t_1=7\Rightarrow\sqrt{x}=7\Leftrightarrow x=49\)
Vậy hpt có nghiệm là x = 49
\(\left(2x+3\sqrt{x}-3\right)^2=116^2\)
\(\Leftrightarrow2x+3\sqrt{x}-3=116\) hoặc \(2x+3\sqrt{x}-3=-116\)
\(\Leftrightarrow2x+3\sqrt{x}-119=0\) hoặc \(2x+3\sqrt{x}+113=0\)
Với \(2x+3\sqrt{x}-119=0\)
\(\Leftrightarrow\left(\sqrt{x}-7\right)\cdot\left(2\sqrt{x}+17\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=7\\\sqrt{x}=-\dfrac{17}{2}\left(vô.lý\right)\end{matrix}\right.\)
\(\Leftrightarrow x=49\)
Với \(2x+3\sqrt{x}+113=0\)
\(\Leftrightarrow PTVN\) (Phương trình vô nghiệm).
\(\Rightarrow\) Vậy \(S=\left\{49\right\}\)
\(x^2-\dfrac{4}{x^2}-4x+\dfrac{8}{x}=9\left(ĐK:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^4-4}{x^2}+\dfrac{-4x^2+8}{x}=9\)
\(\Leftrightarrow\dfrac{x^4-4-4x^3+8x}{x^2}=9\)
\(\Leftrightarrow x^4-4x^3+8x-4=9x^2\)
\(\Leftrightarrow x^4-4x^3-9x^2+8x-4=0\)
"Sử dụng máy tính cầm tay để tính nghiệm (do phương trình này không có nghiệm nguyên và cũng không phân tích thanh nhân tử được)"
\(\Leftrightarrow\left[{}\begin{matrix}x\approx5,415\\x\approx-2,184\end{matrix}\right.\left(tm\right)\)
Vậy: ....
\(\left\{{}\begin{matrix}xy+3y^2+x=3\\x^2+xy-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y+1\right)+3y^2-3=0\\x^2+xy-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y+1\right)+3\left(y+1\right)\left(y-1\right)=0\\x^2+xy-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(y+1\right)\left(x+3y-3\right)=0\\x^2+xy-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=-1\\x=3-3y\end{matrix}\right.\\x^2+xy-2y^2=0\end{matrix}\right.\)
+) \(\left\{{}\begin{matrix}y=-1\\x^2+x\cdot\left(-1\right)-2\cdot\left(-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x^2-x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left\{\left(2;-1\right);\left(-1;-1\right)\right\}\)
+) \(\left\{{}\begin{matrix}x=3-3y\\\left(3-3y\right)^2+\left(3-3y\right)\cdot y-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-3y\\9-18y+9y^2+3y-3y^2-2y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-3y\\4y^2-15y+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-3y\\\left[{}\begin{matrix}y=3\\y=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)
Với \(y=3\Rightarrow x=-6\)
Với \(y=\dfrac{3}{4}\Rightarrow x=\dfrac{3}{4}\)
Vậy: \(\left(x;y\right)=\left\{\left(2;-1\right);\left(-1;-1\right);\left(3;-6\right);\left(\dfrac{3}{4};\dfrac{3}{4}\right)\right\}\)
a) BĐT cần chứng minh \(\Leftrightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{a^2+2ab+b^2}{x+y}\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge xya^2+2abxy+xyb^2\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy ta có đpcm. Dấu "=" xảy ra khi \(ay=bx\)
b) Ta có \(VT=\dfrac{a^2}{4b^2a+a}+\dfrac{b^2}{4a^2b+b}\)
\(\ge\dfrac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}\)
\(=\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2+a+b}\) (vì \(4ab=a+b\))
\(=\dfrac{a+b}{a+b+1}\)
Đặt \(t=a+b\left(t>0\right)\) thì suy ra \(VT\ge\dfrac{t}{t+1}\)
Do \(4ab=a+b\ge2\sqrt{ab}\Leftrightarrow ab\ge\dfrac{1}{4}\)
Nên \(a+b\ge1\) \(\Rightarrow t\ge1\)
Ta cần tìm GTNN của \(T=\dfrac{t}{t+1}\) với \(t\ge1\)
\(T=\dfrac{1}{1+\dfrac{1}{t}}\)
Ta có \(t\ge1\Leftrightarrow\dfrac{1}{t}\le1\Leftrightarrow1+\dfrac{1}{t}\le2\Leftrightarrow\dfrac{1}{1+\dfrac{1}{t}}\ge\dfrac{1}{2}\)
Vậy \(T\ge\dfrac{1}{2}\) \(\Leftrightarrow VT\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{4b^2a+a}=\dfrac{b}{4a^2b+b}\) và \(t=1\)
\(\Leftrightarrow4a^3b+ab=4b^3a+ab\) và \(a+b=1\)
\(\Leftrightarrow a=b\) và \(a+b=1\)
\(\Leftrightarrow a=b=\dfrac{1}{2}\)
Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{2}\)