K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2023

\(y^2=-2\left(x^6-x^3y-32\right)\)

\(\Leftrightarrow2x^6-2x^3y+y^2=64\)

\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)

\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)

Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:

\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)

\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)

\(\Leftrightarrow-2\le x^2\le2\)

Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)

29 tháng 8 2023

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

29 tháng 8 2023

Để \(A⋮B\) thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)

\(\Rightarrow x\in\left\{-2;1;2;5\right\}\)

29 tháng 8 2023

Bài này lớp 6 rồi bạn

29 tháng 8 2023

Vì số người của đơn vị bộ đội xếp hàng 2, hàng 3, hàng 5 hoặc hàng 9 đều vừa hết nên số người của đơn vị đó chia hết cho cả 2, 3, 5 và 9.

Số nhỏ nhất khác 0 mà chia hết cho cả 2; 3; 5 và 9 là: 90

Các số chia hết cho cả 2; 3; 5; 9 là các số thuộc dãy số sau:

       0; 90; 180; 270; 360; 450; 540;...;

Vì số người đơn vị bộ đội đó lớn hớn 425 và bé hơn 465 nên số người của đơn vị bộ đội đó là: 450

Đáp số: 450 

 

 

29 tháng 8 2023

\(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Ta xét các TH:

TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)

29 tháng 8 2023

\(3^x+4^x=5^x\left(1\right)\)

Ta thấy : \(x=1;pt\left(1\right)\Leftrightarrow3+4=5\left(loại\right)\)

\(x=2;pt\left(1\right)\Leftrightarrow9+16=25\left(thỏa\right)\)

vì \(pt\left(1\right):3^x+4^x=5^x\) chỉ có nghiệm \(x=2\) và vô nghiệm khi \(x>2\) (theo định lý fermat)

Vậy pt (1) chỉ có 1 nghiệm \(x=2\)

29 tháng 8 2023

Để \(\overline{a378b}⋮4\) thì \(b\in\left\{0;4\right\}\) (vì \(a\ne8\))

*) b = 0:

\(a+3+7+8+0=a+18\)

Để \(\left(a+18\right)⋮3\) thì \(a⋮3\)

\(\Rightarrow a=6;a=9\) (vì \(a\ne0;a\ne3\))

*) b = 4

\(a+3+7+8+4\)\(=a+3+7+8+4=a+22\)

\(=a+1+21\)

Để \(\overline{a378b}⋮3\) thì \(\left(a+1\right)⋮3\)

\(\Rightarrow a+1\in\left\{0;3;6;9\right\}\)

\(\Rightarrow a\in\left\{-1;2;5;8\right\}\)

Mà \(a\ne3;a\ne7;a\ne8;a\ne4;a>0\)

\(\Rightarrow a=2;a=5\)

Vậy các số tìm được là:

\(63780;93780;23784;53784\)

29 tháng 8 2023

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

29 tháng 8 2023

Em tính S mảnh sân đó rồi tính C mảnh sân.Sau đó em tìm diện tích viên gạch bằng cách S mảnh sân× S mảnh sân.Ra r đó

29 tháng 8 2023

A B C H E I M N G K

a/

Ta có

IA=IC (gt)

IH=IE (gt)

=> AHCE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

\(AH\perp BC\Rightarrow\widehat{AHC}=90^o\)

=> AHCE là hình chữ nhật (hình bình hành có 1 góc vuông là HCN)

b/

Xét tg AHC có

MH=MC (gt)

IA=IC (gt)

=> G là trong tâm của tg AHC \(\Rightarrow HG=2IG\) (1)

\(\Rightarrow HG+IG=IH=3IG\) (2)

Chứng minh tương tự ta có K là trọng tâm của tg ACE 

\(\Rightarrow KE=2IK\left(3\right)\Rightarrow KE+IK=IE=3IK\) (4)

Mà IH=IE (gt) (5)

Từ (2) (4) (5) => IG=IK (6)

Từ (1) (3) (6) => HG=KE

Mà IG=IK => IG+IKGK=2IK=KE

=> HG=GK=KE