Cho \widehat{AOB}+\widehat{A_2} -180^{\circ} = \widehat{B_1}AOB+A2−180∘=B1. Chứng minh rằng AxAx // ByBy.
Hướng dẫn giải:
Trong \widehat{A O B}AOB dựng tia O tOt // O xOx. (1)
Suy ra \widehat{O}_{2}+\widehat{A}_{2}=180^{\circ}O2+A2=180∘ (2 góc trong cùng phía).
Khi đó \widehat{O}_{1} =\widehat{A O B}-\widehat{O}_{2} =\widehat{A O B}-\left(180^{\circ}-\widehat{A}_{2}\right) =\widehat{A O B}+\widehat{A}_{2}-180^{\circ} =\widehat{B}_{1}O1=AOB−O2=AOB−(180∘−A2)=AOB+A2−180∘=B1
\Rightarrow O t⇒Ot // B yBy (vì có cặp góc so le trong bằng nhau). (2)
Từ (1) và (2) suy ra A xAx // B yBy (vì cùng song song với O tOt ).
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Cho \widehat{AOB}+\widehat{A_2} -180^{\circ} = \widehat{B_1}AOB+A2−180∘=B1. Chứng minh rằng AxAx // ByBy.
Hướng dẫn giải:Trong \widehat{A O B}AOB dựng tia O tOt // O xOx. (1)
Suy ra \widehat{O}_{2}+\widehat{A}_{2}=180^{\circ}O2+A2=180∘ (2 góc trong cùng phía).
Khi đó \widehat{O}_{1} =\widehat{A O B}-\widehat{O}_{2} =\widehat{A O B}-\left(180^{\circ}-\widehat{A}_{2}\right) =\widehat{A O B}+\widehat{A}_{2}-180^{\circ} =\widehat{B}_{1}O1=AOB−O2=AOB−(180∘−A2)=AOB+A2−180∘=B1
\Rightarrow O t⇒Ot // B yBy (vì có cặp góc so le trong bằng nhau). (2)
Từ (1) và (2) suy ra A xAx // B yBy (vì cùng song song với O tOt ).
Vậy A tAt // B zBz.