Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của ô tô thứ nhất là x(km/h)
(Điều kiện: x>0)
vận tốc của ô tô thứ hai là x+20(km/h)
Thời gian xe ô tô thứ nhất đi từ A đến chỗ gặp là:
10h30p-6h=4h30p=4,5(giờ)
Thời gian xe ô tô thứ hai đi từ A đến chỗ gặp là:
10h30p-7h30p=3(giờ)
Độ dài quãng đường ô tô thứ nhất đi từ A đến chỗ gặp là
4,5x(km)
Độ dài quãng đường ô tô thứ hai đi từ A đến chỗ gặp là:
3(x+20)(km)
Do đó, ta có phương trình:
4,5x=3(x+20)
=>4,5x=3x+60
=>1,5x=60
=>x=60:1,5=40(nhận)
Vậy: Vận tốc của ô tô thứ nhất là 40km/h
Vận tốc của ô tô thứ hai là 40+20=60km/h
Gọi x (phút) là thời gian làm việc một mình của thợ làm thứ nhất (x >0)
y (phút) là thời gian làm việc một mình của thợ làm thứ hai (y>0)
- Thợ làm thứ nhất hoàn thành công việc trong x giờ => 1 giờ thợ làm thứ nhất hoàn thành 1/x công việc. Tương tự, thợ làm thứ hai làm trong 1 giờ sẽ hoàn thành 1/y công việc.
Từ đó, ta có phương trình thứ nhất: 1/x + 1/y = 1/200 (1)
Người thứ nhất giảm năng suất đi 1,5 lần, tức trong 1 giờ người thứ nhất làm được 2/3x công việc, người thứ hai tăng năng suất lên 2,5 lần, tức người thứ hai làm được 5/2y công việc trong 1 giờ.
Từ đó, ta có phương trình thứ hai: 2/3x + 5/2y = 1/135 (2)
Bấm máy giải ra: x= 360 phút và y= 450 phút.
Vậy thợ làm thứ nhất làm một mình mất 360 phút, còn thợ làm thứ hai là 450 phút.
Kẻ đường kính MK của (O)
Xét (O) có
ΔMPK nội tiếp
MK là đường kính
Do đó: ΔMPK vuông tại P
Xét (O) có
\(\widehat{MNP}\) là góc nội tiếp chắn cung MP
\(\widehat{MKP}\) là góc nội tiếp chắn cung MP
Do đó: \(\widehat{MNP}=\widehat{MKP}\)
Ta có: \(\widehat{MNP}+\widehat{NMH}=90^0\)(ΔMHN vuông tại H)
\(\widehat{MKP}+\widehat{KMP}=90^0\)(ΔMKP vuông tại P)
mà \(\widehat{MNP}=\widehat{MKP}\)
nên \(\widehat{NMH}=\widehat{KMP}\)
=>\(\widehat{NMH}+\widehat{OMH}=\widehat{KMP}+\widehat{OMH}\)
=>\(\widehat{PMH}=\widehat{OMN}\)
Gọi lãi suất 1 năm của ngân hàng là x (%) (x>0)
Số tiền cả gốc lẫn lãi sau năm đầu tiên là:
\(20+20.\dfrac{x}{100}=20\left(1+\dfrac{x}{100}\right)\) (triệu)
Số tiền cả gốc lẫn lãi sau 2 năm là:
\(20\left(1+\dfrac{x}{100}\right)\left(1+\dfrac{x}{100}\right)=20\left(1+\dfrac{x}{100}\right)^2\) (triệu)
Do sau 2 năm chú nhận được 24 triệu nên ta có pt:
\(20\left(1+\dfrac{x}{100}\right)^2=24\)
\(\Leftrightarrow\left(1+\dfrac{x}{100}\right)^2=\dfrac{6}{5}\)
\(\Rightarrow1+\dfrac{x}{100}=\dfrac{\sqrt{30}}{5}\)
\(\Rightarrow x=20\sqrt{30}-100\approx9,54\left(\%\right)\)
Bài 27:
a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
\(\widehat{BDE}\) là góc nội tiếp chắn cung BE
Do đó: \(\widehat{ABE}=\widehat{BDE}\)
Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)
\(\widehat{BAE}\) chung
Do đó: ΔABE~ΔADB
=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)
=>\(AB^2=AD\cdot AE\)
c:
Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
=>\(sđ\stackrel\frown{BC}=120^0\)
Bài 28:
a: Xét (O) có
ΔACM nội tiếp
AM là đường kính
Do đó: ΔACM vuông tại C
=>\(\widehat{ACM}=90^0\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\)
Xét ΔADB vuông tại D và ΔACM vuông tại C có
\(\widehat{ABD}=\widehat{AMC}\)
Do đó: ΔADB~ΔACM
=>\(\widehat{DAB}=\widehat{CAM}\)
b: Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)
nên ABDE là tứ giác nội tiếp
c: ABDE là tứ giác nội tiếp
=>\(\widehat{BAE}+\widehat{BDE}=180^0\)
mà \(\widehat{BDE}+\widehat{EDM}=180^0\)(kề bù)
nên \(\widehat{EDM}=\widehat{BAM}\left(1\right)\)
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{BCM}\) là góc nội tiếp chắn cung BM
Do đó: \(\widehat{BAM}=\widehat{BCM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCM}=\widehat{EDC}\)
=>ED//MC
a. Em tự giải
b.
Tứ giác ABKM nội tiếp (O) \(\Rightarrow\widehat{AMK}+\widehat{ABK}=180^0\)
Theo câu a, IEKB nội tiếp \(\Rightarrow\widehat{IEK}+\widehat{ABK}=180^0\)
\(\Rightarrow\widehat{AMK}=\widehat{IEK}\)
Mà \(\widehat{IEK}=\widehat{AEM}\) (đối đỉnh)
\(\Rightarrow\widehat{AMK}=\widehat{AEM}\)
Xét hai tam giác AME và AKM có:
\(\left\{{}\begin{matrix}\widehat{AEM}=\widehat{AMK}\\\widehat{MAE}-chung\end{matrix}\right.\) \(\Rightarrow\Delta AME\sim\Delta AKM\left(g.g\right)\)
c.
Từ câu b \(\Rightarrow\dfrac{AE}{AM}=\dfrac{AM}{AK}\Rightarrow AE.AK=AM^2\)
AB là đường kính \(\Rightarrow\widehat{AMB}=90^0\) (góc nt chắn nửa đường tròn)
\(\Rightarrow\Delta AMB\) vuông tại M
Áp dụng hệ thức lượng trong tam giác vuông AMB với đường cao MI:
\(BM^2=BI.BA\)
\(\Rightarrow AE.AK+BI.BA=AM^2+BM^2=AB^2=4R^2\)
d.
Chu vi tam giác MIO bằng \(OI+IM+OM\)
Mà \(OM=R\) cố định nên chu vi MIO lớn nhất khi \(OI+IM\) lớn nhất
Ta có:
\(OI+IM\le\sqrt{2\left(OI^2+IM^2\right)}=\sqrt{2OM^2}=R\sqrt{2}\)
Dấu "=" xảy ra khi \(OI=IM\Rightarrow\Delta OIM\) vuông cân tại I
Pitago: \(OI^2+IM^2=OM^2\Leftrightarrow2OI^2=R^2\Rightarrow OI=\dfrac{R}{\sqrt{2}}\)
Vậy chu vi MIO lớn nhất khi I nằm ở vị trí sao cho \(OI=\dfrac{R}{\sqrt{2}}\)
AM là tiếp tuyến tại M \(\Rightarrow AM\perp OM\) hay tam giác OAM vuông tại M
Theo t/c hai tiếp tuyến cắt nhau: \(AM=AN\)
Đồng thời \(OM=ON=R\)
\(\Rightarrow OA\) là trung trực MN
\(\Rightarrow OA\) vuông góc MN tại H, hay MH là đường cao trong tam giác OAM
Áp dụng hệ thức lượng:
\(AM^2=AH.AO\) (1)
Xét hai tam giác AMI và AKM có:
\(\left\{{}\begin{matrix}\widehat{MAI}-chung\\\widehat{AMI}=\widehat{AKM}\left(\text{cùng chắn MI}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMI\sim\Delta AKM\left(g.g\right)\)
\(\Rightarrow\dfrac{AM}{AK}=\dfrac{AI}{AM}\Rightarrow AM^2=AI.AK\) (2)
(1);(2) \(\Rightarrow AH.AO=AI.AK\)
Bài 2:
Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
Bài 3:
a: Xét tứ giác MKHN có \(\widehat{MKN}=\widehat{MHN}=90^0\)
nên MKHN là tứ giác nội tiếp
b: Xét tứ giác PHIK có \(\widehat{PHI}+\widehat{PKI}=90^0+90^0=180^0\)
nên PHIK là tứ giác nội tiếp