làm ơn giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4+625=\left(2x^2\right)^2+\left(5^2\right)^2=\left(2x^2\right)^2+2.2x^2.5^2+\left(5^2\right)^2-2.2x^2.5^2\)
\(=\left(2x^2+25\right)^2-100x^2=\left(2x^2+25-10x\right)\left(2x^2+25+10x\right)\)
\(4x^4+625\)
\(=4x^4+20x^3-20x^3+50x^2+50x^2-100x^2-250x+250x+625\)
\(=\left(4x^4+20x^3+50x^2\right)-\left(20x^3-100x^2-250x\right)+\left(50x^2+250x+625\right)\)
\(=2x^2\left(2x^2+10x+25\right)-10x\left(2x^2+10x+25\right)+25\left(2x^2+10x+25\right)\)
\(=\left(2x^2+10x+25\right)\left(2x^2-10x+25\right)\)
nếu đề cho a;b >=1
\(\Rightarrow\hept{\begin{cases}a\ge\sqrt{a}\\b\ge\sqrt{b}\end{cases}\Leftrightarrow a+b\ge\sqrt{a}+\sqrt{b}}\)
mà \(a^2+b^2\ge2ab>\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\le\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow a\sqrt{b}+b\sqrt{a}\le\left(a+b\right)\left(a^2+b^2\right)\)
đấy nếu cho a;b >= 1 nó vẫn đúng về các yếu tố nhưng hướng làm thiếu tự nhiên và dấu bằng kiểu không hiện ra tại điểm giới hạn là 1 ý
Ta có : \(cos^215^o=sin^275^o;cos^225^o=sin^265^o;cos^235^o=sin^255^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(N=sin^275^o+cos^275^o-\left(sin^265^o+cos^265^o\right)+sin^255^o+cos^255^o-\left(\frac{sin^245^0+cos^245^o}{2}\right)\)
Áp dụng công thức \(sin^2a+cos^2a=1\)ta được
\(N=1-1+1-\frac{1}{2}=\frac{1}{2}\)
Vậy N = 1/2
câu b chờ chút mình làm cho nhé <33
Ta có : \(cos^21^o=sin^289^o;cos^22^o=sin^288^o;...;cos^244^o=sin^246^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(A=\frac{sin^245^o+cos^245^o}{2}+\left(sin^246^0+cos^246^o\right)+...+\left(sin^289^o+cos^289^o\right)\)
Áp dụng ct \(sin^2a+cos^2a=1\)ta được \(A=\frac{1}{2}+1+1+...+1=...\)
P/S : bạn tự đếm xem bao nhiêu cặp nhé ;) tìm ssh á
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
\(A=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right)\div\frac{\sqrt{x}+1}{\sqrt{x}-5}\)( x >= 0 ; x khác 25 )
\(=\left[\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+1}\)
Còn bthuc B thì mình chả thấy đâu cả:)
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\left(\sqrt{n+1}\right)^2\sqrt{n}+\left(\sqrt{n}\right)^2\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(đpcm)
a,Gọi phân giác ứng với cạnh huyền là AD
=>BD/CD=3/4
vì AD là p,giac góc A=>BD/CD=AB/AC=3/4
=>AB=3/4AC
Aps dụng định lí Py-ta-go:=>AB^2+AC^2=BC^2=100
<=>(3/4AC)^2+AC^2=100
<=>25/16AC^2=100
<=>AC=8(cm)
=>AB=3/4AC=6(cm)
b, Xét tam giác ABC có góc A = 90độ và AH là đường cao (gt) => Áp dụng hệ thức lượng tam giác vuông ta có:
1/(AH²) = 1/(AB²) + 1/(AC²)
<=> 1/(AH²) = 1/(6²) + 1/(8²)
<=> 1/(AH²) = 1/36 + 1/64
<=> 1/(AH²) = 25/576
=> 1/AH = 5/24
=> AH = 24/5 =4,8(cm)
Chữ hơi xấu nên thông cảm nhé ! Chúc bạn học tốt
ĐK : x >= 0 ; x khác 4
\(=\left[\frac{2\left(\sqrt{x}-2\right)}{x-4}-\frac{\sqrt{x}-5}{x-4}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+1}\)( chắc là -5 )
\(=\frac{2\sqrt{x}-4-\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+2}\)