Lúc 8 giờ, An rời nhà mình để đến nhà Bích với vận tốc 4 km/h. Lúc 8 giờ 20 phút, Bích cũng rời nhà mình để đến nhà An với vận tốc 3km/h. An gặp Bích trên đường, rồi cả hai cùng đi về nhà Bích. Khi trở về đến nhà mình, An tính rằng quãng đường mình đã đi dài gấp 4 lần quãng đường Bích đã đi. Tính khoảng cách từ nhà An đến nhà Bích.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhaaaaa
Vẽ các đường cao AI; BJ; CK của \(_{\Delta}\)ABC
NM = BC => BM = CN
Ta thấy: \(_{\Delta}\) vuông BHK ᔕ \(\Delta\) Vuông CHJ nên:
\(\frac{BK}{JC}=\frac{HK}{HJ}\left(1\right)\)
BJ // MD và CK // NE nên :
\(\frac{JC}{Jb}=\frac{BC}{BM}=\frac{BC}{CN}=\frac{BK}{KE}\)
\(=>\frac{KE}{Jb}=\frac{BK}{JC}\left(2\right)\)
Từ (1) và (2) => \(\frac{KE}{Jb}=\frac{HK}{JH}\)=> \(\Delta\) vuông EKH ᔕ \(\Delta\) vuông DJH
\(=>\hat{HEK}=\hat{HDJ}=>\hat{AEH}+\hat{HDJ}=180^0\left(đpcm\right)\)
mình không vẽ hình vì sợ bị duyệt nên lamf thê snayf cho nhanh
Ta có : \(xy=6\)
\(\Rightarrow x=\frac{6}{y}\left(y\ne0\right)\)
sau khi có \(x=\frac{6}{y}\) bạn tự thay vào phương trình 1 ẩn x rồi tìm ra x,y thỏa mãn
Ta có: \(x+y+z=1\)mà \(x,y,z\)không âm nên \(0\le x,y,z\le1\)
suy ra \(x^2\le x,y^2\le y,z^2\le z\)
\(S=\sqrt{3x^2 +1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=x+y+z+3=4\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=1\\y=z=0\end{cases}}\)và các hoán vị.
\(A=x^2+4\sqrt{9-x^2}\)(ĐK: \(-3\le x\le3\))
\(=x^2+2.2.\sqrt{9-x^2}\le x^2+2^2+\left(9-x^2\right)=13\)
Dấu \(=\)xảy ra khi \(2=\sqrt{9-x^2}\Leftrightarrow x=\pm\sqrt{5}\).
Mình thì dư đoán điểm rơi \(a=b=c=1\) rồi, nhưng nháp mãi vẫn không ra được.
\(\frac{a}{b^3+ab}\)=\(\frac{a^2}{b^3a+a^2b}\)
tương tự thì ta có S= \(\frac{a^2}{b^3a+a^2b}\) + \(\frac{b^2}{c^3b+b^2c}\) + \(\frac{c^2}{a^3c+ac^2}\)
áp dụng bất dẳng thức cô si s goát,ta có
S=\(\frac{a^2}{b^3a+a^2b}\)+ \(\frac{b^2}{c^3b+b^2c}\)+ \(\frac{c^2}{a^3c+ac^2}\)\(\ge\) \(\frac{\left(a+b+c\right)^2}{b^3a+a^2b+c^3b+b^2c+a^3c+c^2a}\)
cái mẫu mk chx nghĩ ra phân tích ra sao nx,tí nghĩ nốt
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
Đổi 8h20′=8/13h
Gọi khoảng cách từ nhà An tới nhà Bình là x (km, x > 0)
Khi Bình bắt đầu đi thì An đã đi được số ki-lô-mét là: (8/13−8).4=4/3(km)
Tổng vận tốc của hai bạn là : 4 + 3 = 7 (km)
Thời gian để hai bạn gặp nhau kể từ khi Bình đi là: x−4/37=3
Khi đó quãng đường Bình đi được là: 3.3x−421=3x−4/7(km)
Sau khi hai bạn gặp nhau thì lại quay về nhà Bình nên quãng đường Bình đi là: 3x−47.2=6x−8/7(km)
m)
An đi tới nhà Bình rồi quay lại nhà mình nên quãng đường An đi bằng 2 lần khoảng cách giữa nhà hai bạn và bằng 2x Theo bài ra ta có phương trình:
2x=4.(6x−87)2x=4.(6x−87)
⇔14x=24x−32⇔x=3,2(km)
Vậy khoảng cách từ nhà An tới nhà Bình là 3,2 km.
TL:
khoảng cách từ nhà An tới nhà Bích là 3,2 km.
HT