Cho tam giác ABC vuông tại A. Có BC = 15cm và sinB = 3/5. Tính AB, AC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(\overline{9,2x8}\)\(>\)\(92,78\) do đó \(x\)có 1 chữ số
\(\Rightarrow x\)\(=\)\(8;9\)
Thay vào ta đc:\(9,288;9,298\)
Vậy \(x\)\(=\)\(8;9\)
x<17,2<y
mà x,y là các số tự nhiên chẵn
nên (x,y)\(\in\left\{0;18\right\}\)
`17,2 > x `
`=> x` là `0;2;4;...;14` hoặc `16`
`17,2 < y`
`=> y` là `18;20;22`;.... (vô hạn)
Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)
=>\(\dfrac{8}{HC}=tan45=1\)
=>HC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot8=8^2\)
=>HB=8(cm)
BC=BH+CH=8+8=16(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
Nửa chu vi sân trường là 142:2=71(m)
Chiều dài sân trường là (71+13):2=84:2=42(m)
Chiều rộng sân trường là 42-13=29(m)
Diện tích sân trường là:
42x29=1218(m2)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)
=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
Tam giác `ABC` vuông tại `A`
`=> AC = BC . sinB = 15 . 3/5 = 9 (cm)`
Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`