hình bình hành có đặc điểm nào về cạnh và đường chéo mà hình vuông không có
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ứ giác ABCD có :
ˆB=ˆA+10B^=A^+10(1)(1)
ˆC=ˆB+10C^=B^+10
Thay (1) vào ( 2) ⇒ˆC−10=ˆA+10⇒ˆC=200+ˆA⇒C^−10=A^+10⇒C^=200+A^(2)
ˆD=ˆC+10=200+A+10=300+AD^=C^+10=200+A+10=300+A(3)
(1),(2),(3) =>A+B+C+D=360=>ˆA+10+ˆA+20+ˆA+30+ˆA=360=>4ˆA+60=360=>ˆA=750A+B+C+D=360=>A^+10+A^+20+A^+30+A^=360=>4A^+60=360=>A^=750
=>ˆB=85.;ˆC=950;ˆD=1050=>B^=85.;C^=950;D^=1050.
a) x^2 + 4y^2 + 6x - 12y + 18 = 0
<=>x2+6x+9+4y2-12y+9=0
<=>(x+3)2+(2y-3)2=0
<=>x+3=0 và 2y-3=0
<=>x=-3 và y=3/2
b) 5x^2 +9y^2 - 12xy - 6x +9 = 0
<=>x2-6x+9+4x2-12xy+9y2=0
<=>(x-3)2+(2x-3y)2=0
<=>x-3=0 và 2x-3y=0
<=>x=3 và 2.3-3y=0
<=>x=3 và y=2
(x+y+z)^2=0
x^2+y^2+z^2+2xy +2yz+2xz=0
x^2+y^2+z^2+2(xy+yz+xz)=0
Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.
Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:
x^2=0, y^2=0, z^2=0
x=y=z=0
Thay x=y=z=o vào S ta được: S=1
a2+b2+c2+1+1+1-2a-2b-2c=0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
<=>(a-1)2+(b-1)2+(c-1)2=0
<=>a-1=b-1=c-1=0
<=>a=b=c=1
Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
canh đối hbh thi bang nhau con canh cua hinh vuong thi 4 canh bang nhau