\(\hept{\begin{cases}\frac{2}{x-y}+\sqrt{y+1=4}\\\frac{1}{x-y}-3\sqrt{y+1=-5}\end{cases}}\)ko có căn 4 với căn -5 đâu nha nó lỗi á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x:3/7=13/15-2/5
x:3/7=7/15
x=7/15x3/7
x=1/5
chúc bạn học tốt
\(x\times\frac{4}{7}+\frac{1}{3}\times x=\frac{2}{3}\)
\(x\times\left(\frac{4}{7}+\frac{1}{3}\right)=\frac{2}{3}\)
\(x\times\frac{19}{21}=\frac{2}{3}\)
\(x=\frac{2}{3}:\frac{19}{21}\)
\(x=\frac{2}{3}\times\frac{21}{19}=\frac{14}{19}\)
999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
`Answer:`
Sửa đề phần c: Chứng minh KF//BC.
C H B A F K
a. Xét `\triangleAHB` và `\triangleAHC`
`AH` chung
`\hat{AHB}=\hat{AHC}=90^o`
`AB=AC`
`=>\triangleAHB=\triangleAHC(ch-cgv)`
b. Xét `\triangleFAH` và `\triangleKAH`
`AH` chung
`\hat{FAH}=\hat{KAH}`
`\hat{AFH}=\hat{AKH}=90^o`
`=>\triangleFAH=\triangleKAH(ch-gn)`
`=>HK=HF`
c. Theo phần b. `\triangleFAH=\triangleKAH`
`=>AF=AK`
`=>\triangleAFK` cân ở `A`
Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`
`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)
hình tự vẽ nhé.
xét: \(\Delta AHB\) VÀ \(\Delta AHC\) CÓ:
\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)
\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)
b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)
XÉT: \(\Delta KBH\)VÀ \(\Delta FCH\) CÓ:
\(BH=CH\left(cmt\right)\)
\(\widehat{BKH}=\widehat{CFH}=90^0\)
\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)
\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)
\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)
c) ta có: \(AB=AC;;BK=FK\left(cmt\right)\)
\(\Rightarrow AB-BK=AC-FC\)
\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A
\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)
\(\hept{\begin{cases}\frac{2}{x-y}+\sqrt{y+1}=4\\\frac{1}{x-y}-3\sqrt{y+1}=-5\end{cases}}\)
ĐKXĐ : \(x\ne y,y\ge-1\)
Ta có : \(3.\left(\frac{2}{x-y}+\sqrt{y+1}\right)=12\)
Cộng với phương trình ( 2 ) ta có :
\(\frac{7}{x-y}=7\Rightarrow\frac{1}{x-y}=1\Rightarrow x=y=1\)
Thay vào hệ phương trình ta có :
\(\hept{\begin{cases}2+\sqrt{x}=4\\1-3.\sqrt{x}=-5\end{cases}}\)
Cộng pt 1 và pt 2 ta có : \(3-2.\sqrt{x}=-1\)\(\Rightarrow2.\sqrt{x}=4\)\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
= > y = 3