K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Bài 2 : 

\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)

Lấy phương trình (1) - phương trình (2) ta được : 

\(2x=6\Leftrightarrow x=3\)

Thay x = 3 vào phương trình (2) ta được : 

\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)

Vậy \(\left(x;y\right)=\left(3;1\right)\)

30 tháng 6 2021

1 , a = 5 , b = -7

2 , x = 3 , y = 1

8 tháng 4 2021

a, Với \(x\ge0,x\ne4\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)

b, Ta có  \(x=6+4\sqrt{2}=2^2+4\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|=2+\sqrt{2}\)do \(2+\sqrt{2}>0\)

\(\Rightarrow A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\frac{-2+\sqrt{2}}{\sqrt{2}}=\frac{-2\sqrt{2}+2}{2}=\frac{-2\left(\sqrt{2}-1\right)}{2}=1-\sqrt{2}\)

30 tháng 6 2021

1, A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

2 , A = \(1-\sqrt{2}\)

10 tháng 3 2022

ĐKXĐ: x \ge 2

Chuyển vế và bình phương hai vế:

\sqrt{5x^2 + 27x + 25} - 5\sqrt{x+1} = \sqrt{x^2 - 4}

\Leftrightarrow \sqrt{5x^2 + 27x + 25} = \sqrt{x^2 - 4} + 5\sqrt{x+1}

\Leftrightarrow 5x^2 + 27x + 25 = x^2 - 4 + 25x + 25 + 10\sqrt{(x+1)(x^2-4)}

\Leftrightarrow 4x^2 + 2x + 4 = 10\sqrt{(x+1)(x^2 - 4)}

\Leftrightarrow 2(x^2 - x - 2) + 3(x+2) = 5\sqrt{(x+1)(x^2 - 4)}

Đặt a = \sqrt{x^2 - x - 2} \ge 0; b = \sqrt{x+2} \ge 0.

Phương trình trở thành 5ab = 2a^2 + 3b^2 \Leftrightarrow (a-b)(2a-3b) = 0 \Leftrightarrow \left[ \begin{aligned} & a = b\\ & 2a = 3b\\ \end{aligned}\right..

+ Với a = b thì \sqrt{x^2 - x - 2} = \sqrt{x+2} \Leftrightarrow x^2 - 2x - 4 = 0 \Leftrightarrow \left[ \begin{aligned} & x = 1-\sqrt5 \ \text{(loại)}\\ & x = 1+\sqrt5 \ \text{(thỏa mãn)}\\ \end{aligned}\right..

+ Với 2a = 3b thì 2\sqrt{x^2 - x - 2} = 3 \sqrt{x+2}

\Leftrightarrow 4x^2 - 13x - 26 = 0 \Leftrightarrow \left[ \begin{aligned} & x = \dfrac{13 + 3\sqrt{65}}8 \ \text{(thỏa mã)n}\\ & x = \dfrac{13 - 3\sqrt{65}}8 \ \text{(loại)}\\ \end{aligned}\right..

Vậy phương trình có hai nghiệm x = 1+\sqrt5x = \dfrac{13 + 3\sqrt{65}}8.

8 tháng 4 2021

a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)

\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)

\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)

b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)

\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)

8 tháng 4 2021

em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)

8 tháng 4 2021

a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)

\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)

\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).

Dấu bằng xảy ra\(\Leftrightarrow x=y\).

Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).

8 tháng 4 2021

Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)

Lúc đó:

\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)

\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)

Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)

Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)

\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)

\(\Leftrightarrow A=B\)

Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)

Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)

\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow x=y\)

Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:

\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)

Chứng minh tương tự, ta được:

\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)

Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)

\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)

Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)

\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)

\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)

Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).

17 tháng 5 2021

bạn nào cập nhật bài này cần đáp án thì bấm vào câu hỏi thì giáo viên có ghi đáp án đấy

1. Cho phương trình $x^2-2(m+1)x + m^2 - 1 = 0$ (1) ($x$ là ẩn số, $m$ là tham số). a. Giải phương trình (1) với $m = 7$. b. Xác định các giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,$ $x_2$ sao cho biểu thức $M = x_1^2 + x_2^2 - x_1x_2$ đạt giá trị nhỏ nhất. 2. Bài toán có nội dung thực tế: Một nhà máy theo kế hoạch phải sản xuất $2100$ thùng nước sát khuẩn trong một thời gian quy định (số...
Đọc tiếp

1. Cho phương trình $x^2-2(m+1)x + m^2 - 1 = 0$ (1) ($x$ là ẩn số, $m$ là tham số).

a. Giải phương trình (1) với $m = 7$.

b. Xác định các giá trị của $m$ để phương trình (1) có hai nghiệm $x_1,$ $x_2$ sao cho biểu thức $M = x_1^2 + x_2^2 - x_1x_2$ đạt giá trị nhỏ nhất.

2. Bài toán có nội dung thực tế:

Một nhà máy theo kế hoạch phải sản xuất $2100$ thùng nước sát khuẩn trong một thời gian quy định (số thùng nước sát khuẩn nhà máy phải sản xuất trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ công việc trong giai đoạn tăng cường phòng chống đại dịch COVID-19, mỗi ngày nhà máy đã sản xuất nhiều hơn dự định 35 thùng nước sát khuẩn. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu thùng nước sát khuẩn?

28
8 tháng 4 2021

Bài 1 : 

a, Thay m = 7 vào phương trình trên ta được : 

\(x^2-2.8x+49-1=0\)

\(\Leftrightarrow x^2-16x+48=0\)

Ta có : \(\Delta=\left(-16\right)^2-4.48=64\)

\(\Rightarrow x_1=\frac{16-8}{2}=4;x_2=\frac{16+8}{2}=12\)

b, \(x^2-2\left(m+1\right)x+m^2-1=0\)

ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-1\right)=\left(2m+2\right)^2-4m^2+4\)

\(=4m^2+8m-4m^2+4=8m+4\)

Để phương trình có 2 nghiệm thì \(\Delta\ge0\)hay \(8m+4\ge0\Leftrightarrow m\ge-1\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2-1\end{cases}}\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2=4m^2+8m+4-2m^2+2=2m^2+8m+6\)

\(M=2m^2+8m+6-m^2+1=m^2+8m+7\)

\(=m^2+8m+16-9=\left(m+4\right)^2-9\)

Do \(m\ge-1\)nên \(m+4\ge3\)

Suy ra  \(M=\left(m+4\right)^2-9\ge9-9=0\)

Vậy GTNN M là 0 khi m = -1 

10 tháng 5 2021

 140 thùng /1ngày