Tính Limx-> 0 \(\left(\frac{1}{x}-\frac{1}{x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(lim_{x\rightarrow2^+}\frac{2x^3+5x^2-7x+2}{x^2-3x+2}=\frac{24}{0^+}=+\infty\)
\(lim_{x\rightarrow2^-}\frac{2x^3+5x^2-7x+2}{x^2-3x+2}=\frac{24}{0^-}=-\infty\)
do đó \(lim_{x\rightarrow2}\frac{2x^3+5x^2-7x+2}{x^2-3x+2}\)không tồn tại.
\(Lim_{x\rightarrow2}\frac{2x^3+5x^2-7x+2}{x^2-3x+2}=Lim_{x\rightarrow2}\frac{\left(2x-1\right)\left(x^2+3x-2\right)}{x^2-3x+2}\)
\(=Lim_{x\rightarrow2}=\frac{\left(2x-1\right)\left(x^2+3x-2\right)}{\left(x-1\right)\left(x-2\right)}=\infty\)
Vì giới hạn của tử bằng 24 , giới hạn của mẫu bằng 0
Vậy \(Lim_{x\rightarrow2}\frac{2x^3+5x^2-7x+2}{x^2-3x+2}=\infty\)
P/s : Lâu lắm không học giờ làm sai thì thôi vậy

Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)

Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{n+1-n}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng kết quả trên cho \(U_n\) ta được:
\(U_n=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=1-\frac{1}{\sqrt{n+1}}\)
Khi đó: \(limU_n=lim\left(1-\frac{1}{\sqrt{n+1}}\right)\)
Mà \(lim1=1;lim\frac{1}{\sqrt{n+1}}=lim\frac{\sqrt{n}.\frac{1}{\sqrt{n}}}{\sqrt{n}\sqrt{1+\frac{1}{n}}}=lim\frac{\frac{1}{\sqrt{n}}}{\sqrt{1+\frac{1}{n}}}=\frac{0}{1}=0\)
Vậy lim Un =1


\(lim_{x\rightarrow0}\left(\frac{1}{x}-\frac{1}{x^2}\right)=lim_{x\rightarrow0}\frac{x-1}{x^2}=\frac{0-1}{0^+}=-\infty\)